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Abstract. This paper describes the design of a testbed for experimental
validation and trialing of 5G vertical applications. The paper introduces
the challenges that 5G aims to solve with regard to the spectrum de-
mand and the convergence of different wireless communication services.
The European-level 5G research program 5G Public Private Partner-
ship (5G-PPP) is a coordinated European approach to secure European
leadership in 5G. The 5G-PPP has developed a 5G Pan-European Tri-
als Roadmap, which includes a comprehensive strategy for coordinated
international preliminary and pre-commercial trials. The objective in
designing Turku University of Applied Sciences (TUAS) testbed infras-
tructure in Turku, Finland, has been in building a testbed that can be
used to contribute to the development, standardization and trialing of
wireless communications in a diverse selection of scenarios and vertical
applications. In addition, the paper describes the spectrum monitoring
capabilities at TUAS facilities.
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1 Introduction

Designing a 5th generation mobile networks (5G) testbed infrastructure for
experimentations and trials is far from a trivial task. It requires theoretical
knowledge on wireless networks, engineering knowledge to build and operate the
testbed and professional level measurement equipment and skilled personnel to
operate them. 5G will not only be a New Radio [1], but also an umbrella under
which the newly developed and existing technologies are converged to meet the
requirements of 5G applications [2]. Thus, it is essential to know the limitations
of the current technologies and to accurately define the requirements of the 5G
applications.

The 5G Public Private Partnership (5G-PPP) [3] funded by European Union
is a major initiative aiming to secure European leadership in 5G. The public and
private sectors in Europe work together to develop 5G in several different projects
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on different topics, such as overall architecture, physical layer, Network Function
Virtualization (NFV), software-defined networking (SDN), and network slicing.
European Commission has created a coordinated 5G action plan (5GAP) [4],
which promotes preliminary trials under the 5G-PPP arrangement to take place
from 2017 onward and pre-commercial trials from 2018 onward.

To address the key elements in 5GAP, a high-level 5G Pan-European Tri-
als Roadmap [5] was released in May 2017. The main objectives of the Trials
Roadmap are the following:

1. Support global European leadership in 5G technology, 5G networks deploy-
ment and profitable 5G business.

2. Validate benefits of 5G to vertical sectors, public sector, businesses and con-
sumers.

3. Initiate a clear path to successful and timely 5G deployment.
4. Expand commercial trials and demonstrations as well as national initiatives.

The Finnish Funding Agency for Innovation (Tekes) [6] funds a 5thGear pro-
gramme [7], which gathers Finnish companies and research institutes together
with the aim to solve the challenges of next generation wireless communications,
create new business and international collaboration. 5G Test Network Finland
(5GTNF) [8] coordinates the integration of the 5G testbeds in 5thGear pro-
gramme to create a joint open 5G technology and service development innovation
platform to support the vision of 5G-PPP in Finland.

This paper introduces the approach chosen by Turku University of Applied
Sciences (TUAS) for the evolution and design of testbed infrastructure, which
will be used in the European 5G development through experimental validation
and trialing of 5G vertical applications and is also a part of the 5GTNF.

The rest of the paper is organized as follows: Section 2 describes the previ-
ous TUAS research and available test networks, which form a basis of the TUAS
testbed. Section 3 discusses the spectrum issues in 5G, while section 4 describes
the proposed testbed infrastructure on a high level. Section 5 describes the re-
quired spectrum monitoring capabilities and Section 6 concludes the paper.

2 TUAS test networks and field measurement activities

As the 5G is expected to be able to provide optimized support for a variety of dif-
ferent services and applications[9], understanding the limitations in the current
technologies is essential in building a converged 5G ecosystem. Depending on the
use case and application, 5G should be able to simultaneously support multi-
ple combinations of reliability, latency, throughput, positioning, and availability
[10].

Testbed development requires knowledge on different use cases and vertical
applications. TUAS has wide experience in the following vertical applications:

– TV content distribution and reception (broadcasting).
– IoT devices communicating data to the cloud service.
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– Video surveillance streams in high definition.

The previous TUAS research and testbeds in digital terrestrial television
(DTT) broadcasting, TV White Space (TVWS) and licensed spectrum sharing
are described in sections 2.1 and 2.2, while Section 2.3 describes the recently
planned industrial Internet of Things (IoT) testbeds.

2.1 Digital terrestrial television and TV white spaces

TUAS radio laboratory has strong traditions in DTT broadcasting research dur-
ing the past 10 years. Interoperability tests, mobility tests, verification and val-
idation of rotated constellations and measurements of interference and coverage
for DVB-T/H/T2 (Digital Video Broadcasting - Terrestrial/Handheld/Second
Generation Terrestrial) have been conducted in several different projects, includ-
ing EUREKA-Celtic projects WING-TV [11], B21C [12] and ENGINES [13].

Since 2010, the focus of TUAS research has been in spectrum sharing, es-
pecially in TVWS and LSA. In spectrum sharing, it is essential to study the
technical protection conditions to enable the coexistence between secondary and
primary (incumbent) users through field measurements in real test network en-
vironments. Field measurements are very time-consuming and expensive to con-
duct as they require substantial human resources, test network infrastructure,
professional level measurement devices and radio licenses [14, 15]. Field mea-
surements are rare in the literature. Especially in spectrum sharing, the studies
are typically based on simulations and laboratory measurements in controlled
environments.

Turku TVWS test environment [16] was set up during in White Space Test
Environment for Broadcast Frequencies (WISE), WISE2 and ReWISE (Relia-
bility Extension to White Space Test Environment) projects (2011-2014) [17]
to develop and validate technical solutions, accelerate commercial utilization
of white spaces, and to contribute to the regulation and standardization work
[18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. The test network and associated
radio laboratory are located in Turku, Finland. TVWS equipment has also been
installed and trialed in the use-case pilots of WISE2 project in different loca-
tions in Helsinki [16]. The test network was the first in Europe to have a full
geolocation-based radio license for the TVWS frequency range 470 MHz - 790
MHz [30] in the 40 × 40 km area shown in Figure 1.

TUAS participated in Horizon 2020 Collaborative Spectrum Sharing com-
petition with a proposal called DISTRIBUTE, which won the competition [31].
The highly innovative view on distributed spectrum sharing in DISTRIBUTE
uses solutions involving licensed spectrum and is based on forms of geoloca-
tion databases. DISTRIBUTE adapted the geolocation database concept to be
entirely decentralized, operating in a distributed way solely on the nodes or ter-
minals that are sharing the spectrum. The approach is consistent with regulation
and policy. Regulatory constraints might be even conveyed by the regulator at
a higher level, and the distributed database solution will always operate within
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Fig. 1. 40 × 40 km Turku TVWS network radio license area.

those local constraints. The approach is applicable to sharing of licensed spec-
trum, such as licensed devices operating in TVWS and Licensed Shared Access
(LSA), and license-exempt spectrum sharing such as conventional TVWS and
Spectrum Access System (SAS)-supported license-exempt access.

2.2 Licensed spectrum sharing

The Future of UHF Frequency Band (FUHF) project [32] continued to study
spectrum sharing in ultra high frequency (UHF) TV band. The main focus was
on field measurements [15] to study the feasibility of exclusive shared spectrum
access through Long Term Evolution (LTE) Supplemental Downlink (SDL) con-
cept [33, 34, 35, 36, 37]. The project also observed the regulatory and technical
developments to determine the most feasible spectrum utilization methods for
the UHF TV broadcasting band. The potential developments in the use of the
band and candidate technologies such as WiB [38] and Tower Overlay over LTE-
Advanced+ (TOoL+) [39, 40, 41] were considered in [15].

TUAS also co-operated with CORE+ project through WISE2 project and
was a full project consortium partner in the follow-up project CORE++ [42].
These projects studied the LSA [43, 44, 45, 46, 47, 48, 49, 50, 51] and SAS [52, 53,
54] concepts by developing the framework, participating in the regulatory work
and field trialing the developed systems. TUAS participated in the development
of repositories for both LSA and SAS and in developing the spectrum sensing
system fulfilling the requirements of Environmental Sensing Capability (ESC)
in SAS. The European Telecommunications Standards Institute (ETSI) work
on defining LSA for 2300-2400 MHz band was recently finished [55, 56, 57, 58]
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and is expected to evolve into a spectrum sharing method which could assist in
meeting the spectrum demand for 5G [59].

2.3 Industrial IoT

There are two separate private networks for industrial IoT validation and trial-
ing purposes in the TUAS test environment. The first network is a LoRa [60] low
power wide area network (LPWAN) to study deep indoor propagation charac-
teristics of a LoRa network. The network consists of two base stations at TUAS
premises in ICT-City and Sepänkatu (locations are shown in Figure 5), one base
station at Kuusisto TV-mast and additional base stations operated by a private
corporation. The network is operated on three 200 kHz channels at 868.1, 868.3
and 868.5 MHz. The transmissions have a 125 kHz bandwidth and a maximum
duty-cycle constraint of 1%.

The second network consists of industrial radio modems, which provide a
mission-critical communications solution and are based on private radio network-
ing technology [61]. They provide reliable long-range data connectivity and very
high availability for mission-critical applications under severe circumstances. The
radio modems allow to build a private network that is not dependent on mobile
network operators. The master base station is installed at ICT-city. The network
consists of 5 base stations and is operated at 428 MHz.

3 Spectrum issues in 5G

The main drivers for 5G are the constantly increasing requirements for higher
bit rates, shorter latency, reliability, and support for a larger number of devices,
as wireless services, especially video streaming and emerging massive IoT, are
being adopted at an accelerating pace. The mobile network interface becomes
more and more common not just in mobile phones, but also in laptops, tablets,
and other end user equipment.

The quality of available content and services also improves and results in a
rapid increase in the amount of traffic in mobile networks. The trend is predicted
to continue [62, 63, 64] in the foreseeable future. Due to the existing base of end
user equipment supporting only earlier mobile network generations, 5G systems
cannot be allocated on the existing mobile network frequency bands, but they
require new spectrum allocations. The increased demand of mobile network ca-
pacity can partially be solved by more efficient coding, though the main growth
in capacity will take place by decreasing the average cell size and using higher
frequency bands.

The European Commission Radio Spectrum Policy Group issued an opinion
paper stating that the 5G pioneer bands in Europe are 700 MHz, 3.4-3.8 GHz
(the 3.5 GHz band), and 24.25-27.5 GHz [65]. In the countries where the 700
MHz band can be cleared in the coming years, the band will mainly be taken into
LTE use. Otherwise and on longer term, the 700 MHz band, already allocated
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for mobile broadband (MBB), will be critical in providing nationwide and indoor
coverage for 5G [4, 65].

The bands above 24 GHz require a completely new radio access network
(RAN) structure due to a large difference in propagation characteristics com-
pared to the currently used mobile bands. Thus, the 3.5 GHz band will be the
first strategic band for the 5G launch in Europe [4]. World Radiocommunication
Conference 2019 (WRC-19) will decide about European 5G spectrum allocation
above 24 GHz, including the pioneer 5G band above 24 GHz [66]. 5G operating
in the frequencies between 24 and 86 GHz [4, 67] can provide the large band-
widths and high data rates required by the increasing amount of MBB traffic.
In addition to the 24.25-27.5 GHz band, also 31.8-33.4 GHz and 40.5-43.5 GHz
are considered to be promising candidates for 5G in Europe.

The frequencies below 6 GHz are essential for 5G [68], as they can provide
the needed coverage and reduce the cost of building mobile networks due to their
better propagation characteristics. The current 3.5 GHz band allocation differs
significantly in European countries. Some countries will be able to clear the band
within a few years, but most of the countries have spectrum allocations which
cannot be cleared in several years. Some of the countries which cannot clear the
band completely consider making spectrum resources within the band available
through static or dynamic spectrum sharing. Several European countries also
consider regional radio licenses in addition or instead of nationwide radio licenses
in the 3.5 GHz band. In general, spectrum sharing [69, 70] methods may play
a role in meeting the spectrum demand for 5G [59, 71, 72] especially in the
frequencies below 6 GHz.

In the United States (US), a broadcast television spectrum incentive auction
[73] was made to reorganize the DTT transmissions to the lower parts of the
UHF TV frequency band and create contiguous blocks of cleared spectrum to
the upper parts of the frequency band to be auctioned for the mobile network
operators (MNOs). The process comprised of two separate auctions: a reverse
auction for broadcasters to determine the price at which they would be willing
to relinquish their spectrum usage rights and a forward auction to determine
the prices MNOs are willing to pay for the spectrum. The auctions were in-
terdependent and consisted of several rounds until the set goals regarding the
economics and the amount of spectrum to be cleared were achieved. The auc-
tion was formally closed in April 2017 and resulted in a reallocation of 84 MHz
of DTT spectrum and began a 39-month transition period, during which some
television (TV) stations need to take their new channel assignments into use
[74]. It is possible that Europe and the rest of the world could follow the US
in reallocating the 600 MHz band for MBB to obtain more spectrum for 5G in
frequencies below 1 GHz.

4 TUAS testbed for 5G vertical applications

The current research activities at TUAS are largely focused on the development
of a converged 5G ecosystem: Tekes-funded [6] WIVE (Wireless for Verticals)
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[75], CORNET (Critical Operations over Regular Networks) [76], RAMP (Indus-
trial Internet Reference Architecture for Medical Platforms) [77] and EU-funded
5G-PPP phase 2 project 5G-XCAST (Broadcast and Multicast Communication
Enablers for the Fifth Generation of Wireless Systems) [78].

The TUAS testbed will support the following 5G verticals [79, 80]:

– Smart cities [80].
– Media and entertainment [81].
– Factories of the future [82].

The TUAS 5G testbed focus will be on spectrum below 6 GHz. The frequen-
cies of the current test network components are illustrated in Figure 2. Radio
licenses need to be acquired for each of the frequency bands, and permission from
the MNOs is needed in the bands which have been allocated to LTE. As can
be seen from Figure 6, the 700 MHz band does not have any transmissions and
is available for testbed use for the time being even though it has already been
auctioned to the MNOs. The 5G candidate band 3.4-3.8 GHz is the main can-
didate for a future testbed extension, while the 2.5-2.69 GHz band is a backup
frequency band if radio licenses cannot be obtained to the desired frequency
bands.

Fig. 2. TUAS testbed service frequencies.

The overall TUAS 5G testbed service architecture is illustrated in Figure
3. The testbed infrastructure, backbone and the Operations, Administration,
and Maintenance (OAM) are located in the TUAS radio laboratory at ICT-
city building in Turku, Finland. The internal LTE virtual Evolved Packet Core
(vEPC) and the LSA are operated on servers of the TUAS radio laboratory net-
work. The ETSI LSA architecture reference model described in [57] is used. The
blocks in grey color describe the equipment under the management of TUAS
radio laboratory and the blocks in white the equipment outside TUAS control.
Thus, the LSA controller is currently an external service. The Microsoft Azure
portal and the external LTE Evolved Packet Cores (EPCs) are connected to
the TUAS radio laboratory infrastructure through a firewall and a Virtual Pri-
vate Network gateway (VPN-GW). The green blocks illustrate the air interfaces
of different testbed services and the orange box the spectrum monitoring and
sensing systems described in section 5.
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Fig. 3. Block diagram of overall TUAS testbed service architecture.

One of the major challenges in the 5G experimentations and trials will be the
user terminals. Especially the supported frequency ranges, the level of flexibility
the terminals allow and the available software applications will largely determine
for which purposes the terminals can be used for.

Figure 4 gives a more detailed description of the LTE part of the testbed
along with a plan for the installation of first LTE Evolved Node Bs (eNBs). Two
small-cell eNBs will be installed at ICT-city premises for indoor trialing pur-
poses, one rooftop eNB will be installed at ICT-city and a second rooftop eNB
at TUAS premises at Sepänkatu. The test network infrastructure includes an op-
tical transport network (OTN) between the premises at ICT-city and Sepänkatu.

Fig. 4. LTE network architecture block diagram.
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Fig. 5. LTE eNB geographical locations in Turku, Finland.

The geographical locations of the eNBs in Turku, Finland, are shown in
Figure 5. In addition to LTE eNBs, the locations have the following services:

– Sepänkatu: long-term radio spectrum observatory system, LoRa base station
and industrial radio modem base station.

– ICT-city radio laboratory: on-demand real-time spectrum analysis, LoRa base
station, industrial radio modem base station and DTT transmitter.

Instead of being only a new radio access technology for LTE, 5G will be an
integration of several different services and networks. Thus, the overall system
will be a completely redesigned programmable multi-service architecture [83, 84,
85] which uses network slicing. Network slicing means that the system can run
multiple service instances (slices) on the same physical infrastructure. Network
slices can be configured for each application, use case or service of 5G to meet
its specific requirements and to serve different groups of users. The flexibility
and programmability needed to create the network slices are provided by NFV
and SDN.

5G-XCAST project [78] aims to design a dynamically adaptable 5G network
architecture, which has layer independent network interfaces that are capable
of dynamically and seamlessly switching between unicast, multicast and broad-
cast modes or using them in parallel. For example, the TUAS 5G testbed will
be used for demonstrating point-to-multipoint Public Warning Systems (PWS)
capabilities developed in the project.

The TUAS testbed can be flexibly extended as new network functionalities
are developed and new equipment becomes available. The testbed infrastruc-
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ture allows to test various Proof of Concepts (PoCs) from different 5G vertical
applications.

5 Radio spectrum monitoring and sensing

A spectrum observatory network was built in a GlobalRF Spectrum Opportunity
Assessment project [86, 87, 88, 89, 90, 91, 92] in Wireless Innovation between
Finland and the US (WiFiUS) program [93], which was jointly funded by the
National Science Foundation (NSF) [94] and Tekes [6]. The project built an inter-
national network of radio frequency (RF) spectrum observatories continuously
collecting long-term spectrum data to study the trends in spectrum utilization
and to identify frequency bands where spectrum sharing could be feasible.

Three spectrum observatories are operational in Chicago, US, Virginia, US,
and Turku, Finland. The measurement data from the spectrum observatories
in Finland and the US is collected and stored into a single location at Illinois
Institute of Technology [95] in Chicago. The RFeye nodes manufactured by CRFS
[96] measure the whole frequency band from 30 MHz to 6 GHz in each of the
locations.

Figure 6 shows the Turku spectrum observatory power spectral density (PSD)
from June 26th 2017 for 470-900 MHz. The 700 MHz band was allocated to MBB
[97, 98] and in Finland the band has been cleared and auctioned for MNOs [99].
As can be seen from the figure, the 5 DTT multiplexes have been regrouped
to the 470-694 MHz UHF TV broadcasting frequency range, but the 700 MHz
MBB is not operational yet. Three 10 MHz blocks of frequency division duplex
(FDD)-LTE downlink transmissions are active in the 800 MHz band [100].

Fig. 6. 470-900 MHz UHF spectrum average PSD on June 26th 2017.

ICT-City site is equipped with several on-demand spectrum monitoring sys-
tems, which can distinguish different signals operating in the same frequency
band [101], as shown in Figure 7. The wideband signal in Figure 7 is a 10 MHz
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LTE downlink signal and the two low-power transmissions are Programme Mak-
ing and Special Events (PMSE) wireless microphones with 200 kHz bandwidth.
The y-axis represents the signal strength in dBm and the x-axis the frequency.
The center frequency is 783 MHz and the span 20 MHz. TUAS has also partici-
pated in the development of distributed spectrum sensing system with low cost
hardware [102] and Environmental Sensing Capability (ESC) in SAS [54].

Fig. 7. On-demand spectrum monitoring is capable of distinguishing different signals
operating in the same frequency band.

6 Conclusions

5G can be seen as an umbrella, which converges all the current wireless network
systems, services and frequency ranges into one ecosystem. The ecosystem in-
cludes the evolution of the old technologies and completely new technologies and
architectures, all of which need to meet the key performance indicators (KPIs)
set in 5G-PPP for different vertical applications and services. The presented
TUAS 5G testbed is a case study, which demonstrates how a testbed can be
built for the purposes of the 5G research projects TUAS is involved in. The
testbed allows to use different LTE ePCs and frequency ranges, which allows to
support a range of different vertical applications.
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pola, S. Yrjölä, V. Hartikainen, L. Tudose, A. Kivinen, J. Paavola, K. Heiska,
T. Hänninen, and J. Okkonen, “Description of Finnish Licensed Shared Access
(LSA) field trial using TD-LTE in 2.3 GHz band,” in 2014 IEEE International
Symposium on Dynamic Spectrum Access Networks (DYSPAN), April 2014, pp.
374–375.

48. J. Kalliovaara, T. Jokela, R. Ekman, J. Hallio, M. Jakobsson, and T. Kippola,
“Interference measurements for Licensed Shared Access (LSA) between LTE and
wireless cameras in 2.3 GHz band,” 2015 IEEE International Symposium on Dy-
namic Spectrum Access Networks (DYSPAN), pp. 128–134, 2015.

49. M. Matinmikko, M. Palola, M. Mustonen, T. Rautio, M. Heikkilä, T. Kip-
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