





OPERATING EUROVISION AND EURORADIO

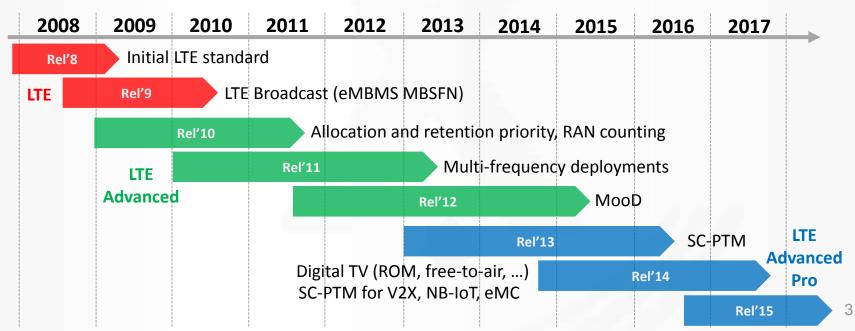
#### FORECAST 2017 - 20th Anniversary

# All you want to know about the 5G-Xcast project

Dr. David Gomez-Barquero Universitat Politecnica de Valencia 24 Nov. 2017, Geneva, Switzerland

#### Contents




- Introduction
  - 5G, IMT2020 and 3GPP annex slides
- Broadcast in 5G
- eMBMS Evolution in 4G LTE
- 5G in 3GPP
- The 5G-Xcast Project
- Outlook on 5G Broadcast

## PTM Evolution in 4G





- **Two major trends from Rel'12 enhancements:** 
  - Dedicated broadcast networks for TV services
  - PTM as RAN delivery optimization feature \_



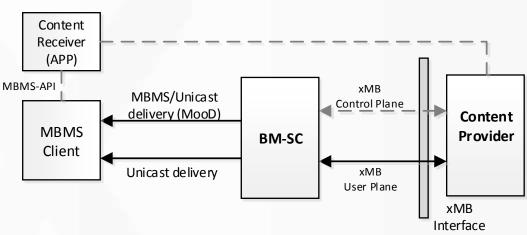
## PTM in 4G LTE



- Originally included in Rel'9 (eMBMS), based on 3G MBMS from Rel'6
- It has been significantly enhanced in the latest releases of LTE-Advance Pro for different types of communications:
  - Television services (EnTV) based on broadcasters' requirements
  - Critical communications
  - Vehicular communications
  - Machine-type communications
- Two major trends and main technology enhancements:
  - Dedicated broadcast networks for TV services
    - Receive only, shared network infrastructure, external interface towards content providers, ...
  - PTM as delivery optimization feature
    - MooD, SC-PTM, ...
- But built on top of an initially conceived basic and static TV-like service
  - Following LTE backwards-compatibility design principle

### Rel'14 EnTV - towards stand-alone eMBMS broadcast networks

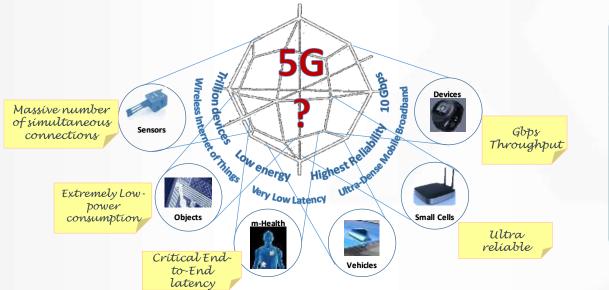


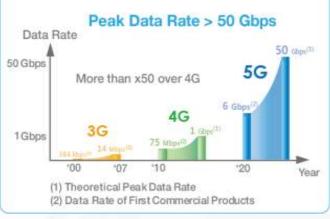

Radio Enhancements

Von-backwards compatible

- Dedicated carriers with up to 100%
- MBMS allocation
- Self-contained system information and synchronization signals
- 200 µs long cyclic prefix to support large inter-site distances

#### Architecture Enhancements


- Receive-Only Mode (ROM) for devices without SIM card or 3GPP subscription
- New service types to enable free-to-air content broadcast that can be received by ROM devices and also interactive services
- Open standardized broadcasting application programming (xMB) external interface towards the TV content providers to simplify access to complex eMBMS procedures
- Transport-only (pass-through) MBMS bearer service type to use the eMBMS network as content delivery platform in the native format without transcoding
- Shared networks among several MNOs to avoid broadcasting the same content at the same time over different networks




## What will 5G bring?



- 5G will not only provide one order of magnitude increase in peak data rates
- It is being designed to meet very challenging technical requirements to support new use cases derived from several vertical industries, not just for mobile broadband





### ITU IMT-2020 Minimum Technical Performance Requirements (I/II)



| KPI                                                 | Minimum Requirement                                  |
|-----------------------------------------------------|------------------------------------------------------|
| Peak Data Rate                                      | 20 Gpbs DL 10 Gbps UL                                |
| Peak Spectral Efficiency                            | 30 bps/Hz DL 15 bps/Hz UL                            |
| User experienced data rate                          | 100 Mbps DL: 50 Mbps UL                              |
| 5 <sup>th</sup> percentile user spectral efficiency | 0.225 bps/Hz DL eMBB in dense urban (0.12 rural)     |
| Average spectral efficiency                         | 9/7.8/3.3 bit/s/Hz/TRxP for eMBB hotspot/urban/rural |
| Area traffic capacity                               | 10 Mbit/s/m2 in the Indoor Hotspot for eMBB          |
| Bandwidth                                           | at least 100 MHz: 1 GHz above 6 GHz                  |





Broadcast/Multicast Point-to-Multipoint (PTM) transmissions are key in many 5G use cases, but they have not been considered in the first release of 5G (Rel'15)

#### MULTIMEDIA & ENTERTAINMENT



UHDTV delivery VR, AR, 360° video Content prepositioning Push to X (talk/video)

#### CONNECTED AUTOMOTIVE



Autonomous driving information, Infotainment Safety applications, Signage information



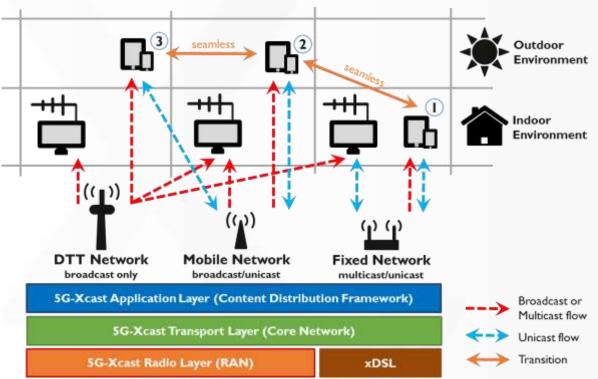
#### Software Updates Common Control Messages

#### PUBLIC WARNING AND SAFETY



Disaster alerts (e.g. tsunami, earthquake) Emergency alerts (e.g. hazar, amber alerts)

#### UNPRECEDENT COMMUNICATION CAPABILITIES


OPPORTUNITY FOR THE CONVERGENCE OF FIXED, MOBILE AND BROADCAST NETWORKS

**SCAST**5G Broadcast Vision

PTM AND CACHING AS BUILT-IN NETWORK DELIVERY OPTIMISATIONS, NOT AS A SERVICE, FOR ALL NETWORK SLICING FOR BROADCAST SERVICES

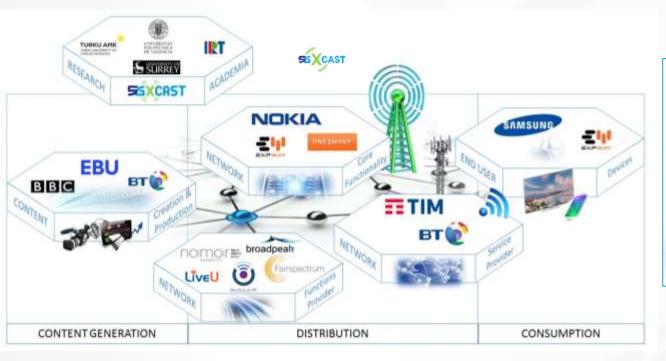


The converged media delivery architecture of 5G-Xcast over fixed broadband, mobile broadband and terrestrial broadcast networks allows a **seamless**, uninterrupted service to be offered to the users as they move.



## **Basic Information about 5G-Xcast**




- Title: Broadcast and Multicast Communication Enablers for the Fifth-Generation of Wireless Systems (5G-Xcast)
- Research and Innovation Action project from 5G-PPP Phase-II
- Starting and end date: June 2017 May 2019 (24 months)
- 18 partners of 9 countries
- Website: <u>www.5g-xcast.eu</u>



#### Consortium



#### **Media & Entertainment Value Chain**







**USE CASES** Identify and define requirements and KPIs for: Media, Automotive, IoT and Public Warning

## **PTM RAN** architecture.

**BROADCAST** Comprehensive and holistic, design will include the radio interface, RAT protocols and RAN

CONVERGED Combining fixed, mobile and broadcast networks. Using mix of unicast, broadcast **CORE NETWORK** transport and caching capabilities.



## **SEXCAST** Technical Challenges / Our Focus

#### CONTENT DISTRIBUTION FRAMEWORK

Network-agnostic, combining unicast, multicast, broadcast and caching for dynamic network resource optimisation. Simple interface between content service provider and network operator

## PROOF-OF-CONCEPT PROTOTYPES **Test-Beds**

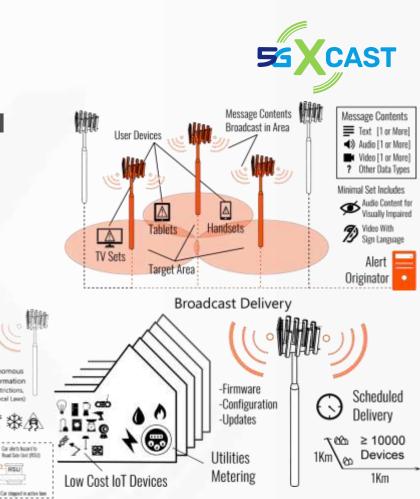
For the **5G-Xcast radio**, transport and application layer key components

5GIC (Surrey, UK) IRT (Munich, Germany) TUAS(Turku, Finland)

### WP2 Use Cases

- **D2.1 published:** Definition of 5G use cases for PTM transmissions for media. PW. automotive and IoT verticals, with high-level requirements
- **Next step:** technology evaluation and use case refinement in cooperation with the technical WPs

TV Transmission


Mobile Networ

Broadcast

╓┼┼┿

Seamless

ĎSL



http://5g-xcast.eu/2017/10/31/deliverable-d2-1-definition-of-use-cases-requirements-and-kpis-now-available/

Signage

Local Area Broadcast

Alerting

Broadcast area

specific hazard alert

56 Base

**Station** 

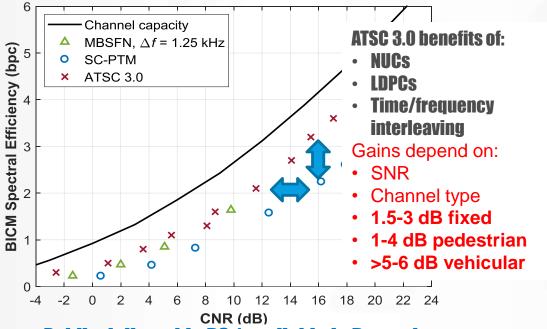
DSI

Information

Mapping Data

utonomous Driving Information

local Laws)

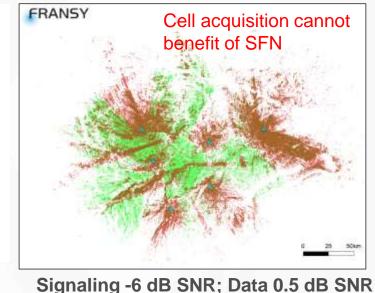

E.o. Traffic Restrictions.

Local Road Conditions v

/ Safety Information

### WP3 RAN Benchmark illustrative results

Comparison eMBMS vs. ATSC 3.0 physical layer




Performance analysis of eMBMS Rel'14

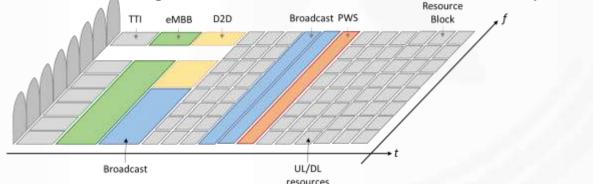
CAST

CAS+MBSFN

56)



**MBSFN** 


CAS

- Public deliverable D3.1 available in December
- On-going: evaluation of the performance of 4G LTE in IMT2020 test environments and assess the benefits
  of PTM (intended exercise for the 5G-Xcast radio interface)

## WP3 RAN 5G PTM Air Interface



- Following 3GPP Rel'15 New Radio progress and building a link-layer simulator
  - Numerology only allows 15 kHz minimum carrier spacing
  - Rel'14 7.5 kHz and 1.5 kHz also possible that allow longer CPs
- Basic extension from PTP to PTM minimal additions
  - Pilots, gNBs synchronization, SFN coordination, numerology, resource allocation ...
- Additional technologies trade-off gain vs. additional complexity
  - NUCs, time interleaving, MIMO, NOMA, AL-FEC at the MAC layer, ...

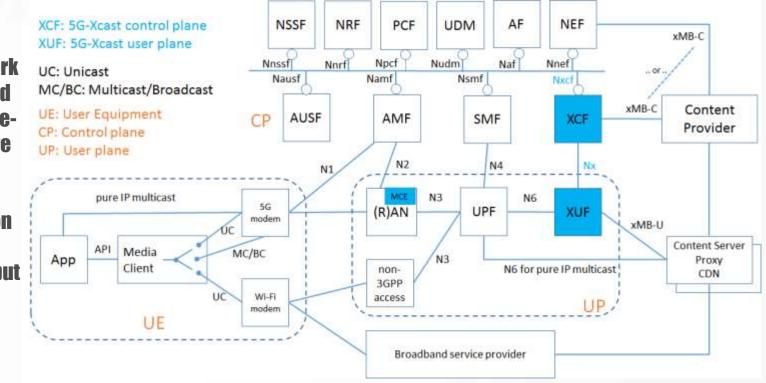


## WP4 Converged Core Network

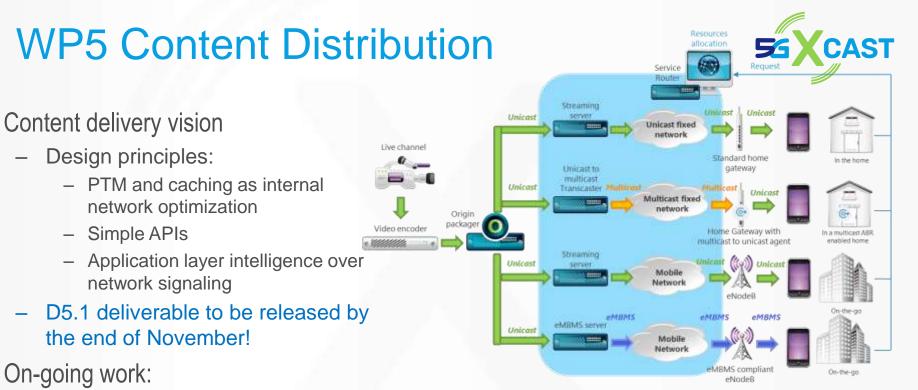


#### Achievements:

- Identification of the limitations of eMBMS Rel'14
- Identification and analysis of new functionalities and technologies for improvement
  - Converged autonomous MooD, multilink, MEC, PW for multimedia data
- Identification of different types of network convergence
  - Radio Access Convergence, Convergence of 3GPP and Non-3GPP Access, Overlay Convergence, 5G Converged Core




## WP4 5G-Xcast Mobile Core Network




#### On-going work:

- Mobile PTM network architecture based on 3GPP 5G servicebased architecture
  - NFV/SDN
  - Network slicing
- Future contribution to 3GPP 5G\_Media\_Distribut ion



Rel'15 full 5G core network due in June 2018

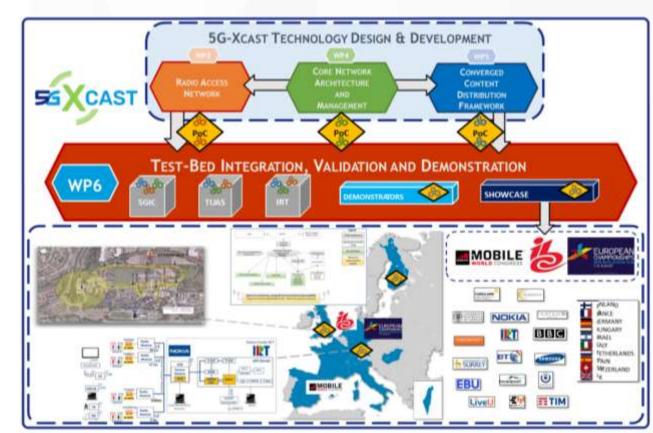


- Combination of MooD (mobile network) and ABR multicast (fixed network) in the same converged system
- More details in presentation on "Unified content delivery on fixed and mobile networks" by Steve Appleby (BT) WP5 leader 20

lacksquare

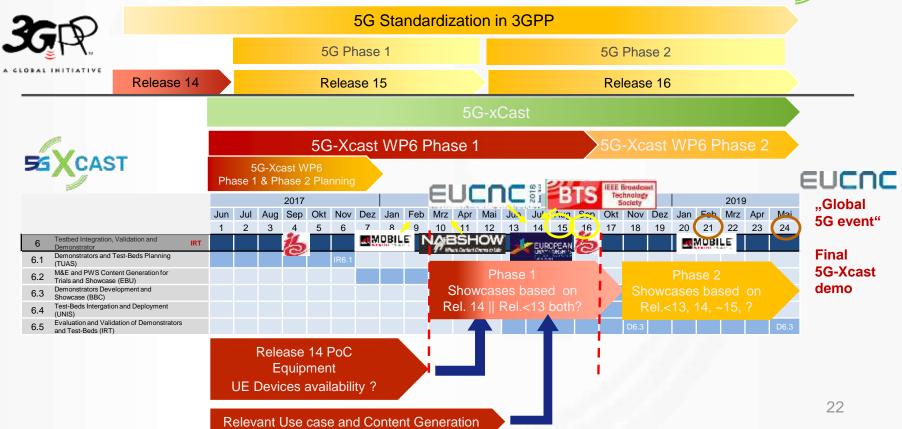
## WP6 Test-Beds




- Test-beds
  - 5GIC, IRT, TUAS

#### Large-scale demonstrations

- Object-based broadcasting
- Hybrid broadcasting
- Public warning


#### Small-scale demonstrations

- IBC 2018, EUCNC 2019
- Showcase
  - European
     Championships 2018



## WP6 Roadmap - Development plan





#### WP7 Dissemination & Standardization

#### • Dissemination

- Public deliverables, scientific papers, presentations:
  - <u>http://5g-xcast.eu/documents/</u>
- News and events
  - <u>@5Gxcast</u> tweet for live updates
  - <u>http://5g-xcast.eu/news-events/</u>
- Videos
  - <u>https://youtu.be/daFOf30NG2U</u>
- One-day tutorial and workshop at IEEE BMSB 2018

#### Standardization

- 3GPP
  - 5G\_Media\_Distribution, Study on MBMS User Services for IoT, eMBMS and Mission Critical Services, Study on the Wireless and Wireline Convergence for the 5G system architecture,
- DVB (WiB, ABR multicast)
- Broadband forum





#### **5G Broadcast Outlook Summary**



- **Broadcasters interest** in 3GPP technologies is increasing
  - EBU broadcast requirements taken into account in Rel'14 (EnTV) but not 100% clear that eMBMS can be fully deployed in existing HPHT DTT broadcasting infrastructure
  - Rel'14 has a long legacy from Rel'8 detailed gap-analysis required (e.g. CAS)
  - 5G is an opportunity for broadcasters to define a 5G broadcast mode using the latest 3GPP technology
- Many 5G use cases require PTM transmissions, not just TV broadcast
  - Treat **PTM transmissions and caching** as **delivery optimization tool**
- 5G Broadcast not included in the first 5G release (Rel'15) and probably not the second (Rel'16)
  - Good opportunity in Rel'17 for a solution for all relevant verticals, but important to ensure forward-compatibility
- 5G-Xcast is performing pre-standardization investigations on 5G Broadcast, and will also seek consensus building for 3GPP activities

Website: www.5g-xcast.eu





LinkedIn: https://uk.linkedin.com/company/5g-xcast









#### IEEE International Symposium on Broadband Multimedia Systems and Broadcasting

June 6th - 8th 2018, Valencia, Spain

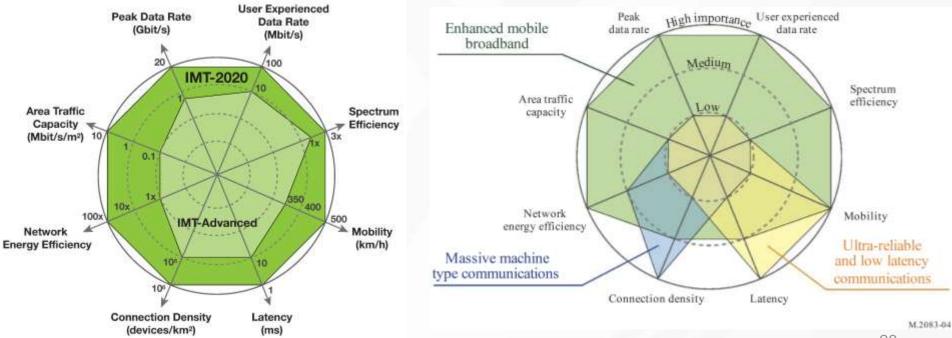
Tutorial on 5G Broadcast. Several workshops on 5G. Tracks: Multimedia Broadband and Broadcasting Systems; Multimedia Services, Quality and Content; Multimedia Processing; Multimedia and Broadcast Transmissions

www.mcg.upv.es/bmsb2018/ CfP Deadeline: 22<sup>nd</sup> Dec (1000 word extended abstract)

## 5G Driven by New Use Cases and Designed for New Vertical Industries






27

## ITU IMT-2020 Key Capabilities and Usage Scenarios

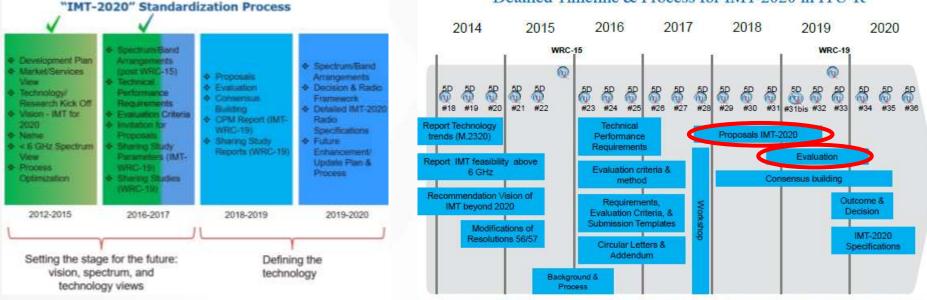


MTC

Latency/Reliability



### ITU IMT-2020 Minimum Technical Performance Requirements (II/II)




| KPI                        | Minimum Requirement                                                                                                                        |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Latency                    | User plane latency:<br>• 4 ms for eMBB;<br>• 1 ms for URLCC<br>Control plane latency:<br>• 20 ms (10 ms encouraged)                        |
| Connection density         | 1.000.000 devices per km2                                                                                                                  |
| Reliability                | 1-10 <sup>-5</sup> success probability of transmitting a layer 2 PDU of 32 bytes within 1 ms in channel quality of coverage edge for URLLC |
| Mobility                   | Up to 500 km/h                                                                                                                             |
| Mobility interruption time | 0 ms                                                                                                                                       |
| Energy efficiency          | High sleep ratio and long sleep duration for eMBB                                                                                          |

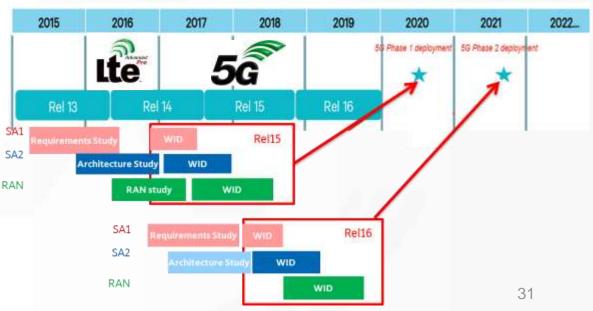
## **ITU IMT-2020 Timeline**



#### Proposal submission opened in October 2017 and closes in July 2019



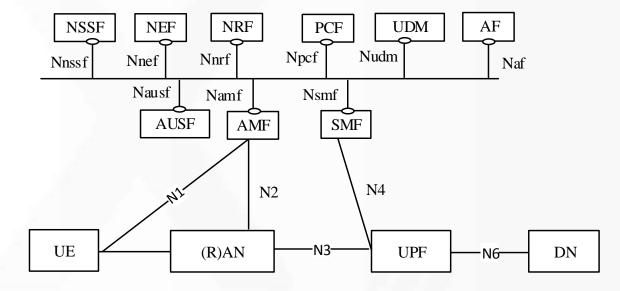
Note: Meeting #31bis - if needed focus meeting towards WRC-19 (non-Technology), Meeting #33 - focus meeting on Evaluation (Technology)


Note: While not expected to change, details may be adjusted if warranted.

#### Detailed Timeline & Process for IMT-2020 in ITU-R






- 3GPP started in March 2017 the normative work for 5G in Rel'15, while continue working in LTE-Advanced Pro
- 3GPP Rel'15 will aim the first phase of 5G deployments in 2020
  - A.k.a. New Radio (NR)
- 3GPP Rel'16 will target the ITU IMT-2020 submission
- 3GPP plans to submit both LTE-Advanced Pro and New Radio as IMT-2020 candidates
  - 5G NR for eMBB and URLLC
  - LTE-based NoB-IoT and eMC for mMC



## 5G Service-based reference arquitecture



- **Authentication Server Function (AUSF)** •
- **Access and Mobility Management Function (AMF)** •
- Data Network (DN) •
- **Unstructured Data Storage Function (UDSF)** •
- **Network Exposure Function (NEF)** •
- **NF Repository Function (NRF)** •
- **Network Slice Selection Function (NSSF)** •
- **Policy Control function (PCF)** •
- **Session Management Function (SMF)** •
- **Unified Data Management (UDM)** •
- **Unified Data Repository (UDR)** •
- **User plane Function (UPF)** •
- **Application Function (AF)** •
- **User Equipment (UE)** •
- (Radio) Access Network ((R)AN) •
- **5G-Equipment Identity Register (5G-EIR)** •



## **5G-Xcast Consortium**



- Universitat Politècnica de València (UPV)
- Nokia Solutions and Networks OY
- Nokia Solutions and Networks Management International GmbH
- British Broadcasting Corporation (BBC)
- British Telecommunications Public Limited Company (BT)
- Broadpeak
- BundlesLab Kft
- Expway
- Fairspectrum OY
- Institut für Rundfunktechnik GmbH (IRT)
- LiveU Ltd.
- Nomor Research
- One2Many
- Samsung Electronics (UK) Limited
- Telecom Italia
- Turun Ammattikorkeakoulu OY (TUAS)
- Union Européenne de Radio Télévision (EBU)
- University of Surrey 5GIC

