

WP3

5G-Xcast Tutorial Broadcast and Multicast Communication Enablers for 5G

WP3: 5G-Xcast Radio Access Network

Presenters:

Dr. Manuel Fuentes (Samsung Electronics R&D UK)

Dr. Jordi Joan Giménez (Institut für Rundfunktechnik)

Carlos Barjau (Universitat Politècnica de València)

The current presentation shows **work in progress**, supported in part by the European Commission under the 5GPPP project 5G-Xcast (H2020-ICT-2016-2 call, grant number 761498).

The content is not yet approved nor rejected, neither financially nor content-wise by the European Commission. The approval/rejection decision of work and resources will take place **at the Mid-Term Review Meeting planned in September 2018 and the Final Review Meeting**, after the monitoring process involving experts has come to an end.

Public Deliverables

- D3.1: Performance of LTE Advanced Pro (Rel'14) eMBMS, Nov.
 2717.
 - (i) Download
 - <u>News</u>
- D3.2: Air Interface, Nov. 2018.
- D3.3: RAN Architecture, Jan. 2019.
- D3.4: RAT Protocols and RRM, May 2019.

Contents

1. Introduction

2. 4G LTE eMBMS Rel'14

- 2.1. System overview
- 2.2. Limitations identified
- 2.3. RAN benchmark

3. 5G New Radio Rel'15 (PTP)

- 3.1. Air interface
- 3.2. Radio Access Network
- 3.3. Protocols and RRM

4. 5G-Xcast Solution for PTM

- 4.1. Air interface design
- 4.2. RAN design
- 4.3. Future work

1. Introduction

۲

WP3 within the 5G-Xcast project:

• Tasks and Deliverables:

- T3.1: LTE-Advanced Pro Broadcast Benchmark
- **T3.2:** Air interface
- T3.3: RAN Logical Architecture
- T3.4: RAT Protocols and Radio Resource Management
- **T3.5:** RAN Proof-of-Concept Prototypes

D3.1 (Nov. 2017)
D3.2 (Nov. 2018)
D3.3 (Feb. 2019)
D3.4 (May 2019)
D3.5 (May 2019)

Contents

1. Introduction

2. 4G LTE eMBMS Rel'14

- 2.1. System overview
- 2.2. Limitations identified
- 2.3. RAN benchmark

3. 5G New Radio Rel'15 (PTP)

- 3.1. Air interface
- 3.2. Radio Access Network
- 3.3. Protocols and RRM

4. 5G-Xcast Solution for PTM

- 4.1. Air interface design
- 4.2. RAN design
- 4.3. Future work

- Section related to the studies performed in **Deliverable D3.1**.
 - Available in the 5G-Xcast public website.

2.1. System overview

• eMBMS definition. MBSFN and SC-PTM solutions.

2.2. Limitations identified

- Waveform flexibility and synchronization robustness.
- Radio resource management

2.3. RAN Benchmark

- Inspection and analysis.
- Simulations: link-level, system-level and coverage.
- Radio Access Network

Deliveral	Deliverables							
+ WP2	+ WP2 - KPI's, Requirements and Use Cases - WP3 - 5G-Xcast Radio Access Network							
ID	Title	Deadline	Link					
D3.1	Performance of LTE Advanced Pro (Rel'14) eMBMS	Nov 2017 (M6)	PDF PDF News Article					

2.1. LTE-A Pro Rel 14 eMBMS System Overview

eMBMS offers 2 radio delivery modes:

Multicast-Broadcast SFN (MBSFN)

Same signal transmitted (via **PMCH**) synchronously by multiple eNB within an MBSFN area

Extended cyclic prefixes to enable **SFN** areas with 3 numerology options

Specific reference signals (**RS**) for correct channel equalization in SFN environment (higher frequency density)

Single-Cell PTM (SC-PTM)

Designed for more efficient PTM on a **cell basis**

Keeps eMBMS network architecture Uses LTE downlink shared channel (**PDSCH**) scheduled by PDCCH (via **Group-RNTI**) Supports same features as for PDSCH (unicast):

- Use of **multi-antenna** techniques
- Supports short CP
- Supports regular RS

- Dynamic resource allocation

according to scheduling on a TTI by TTI basis ⁸

2.1. LTE-A Pro Rel 14 eMBMS System Overview

eMBMS (MBSFN) in **Rel'14** has undertaken changes to address requirements for **Terrestrial Broadcasting**:

- Larger inter-site distance support in SFN by means of a **new numerology**:
 - 1.25 kHz OFDM sub-carrier spacing
 - 200 µs cyclic prefix with 1 ms OFDM symbol duration
 - New RS according to the new numerology
 - Target 2 bps/Hz with 15 km inter-site distance (ISD)
- More capacity for broadcast data:
 - Almost 100% eMBMS carrier allocation with new subframe design with no unicast control region.
 - Reduced synchronization data via a **Cell Acquisition Subframe** with reduced periodicity.

	• •								
CAS	MBSFN								

- Other enhancements for Terrestrial Broadcast are introduced but not linked to the radio layer:
 - Receive-only mode: free-to-air content delivery without SIM/service subscription
 - **Transport-only service mode**: no need for transcoding (Native formats are supported)
 - Standardized interface to content providers (xMB)
 - Shared MNO service on a common broadcast carrier

2.2. Main Limitations Identified

MBSFN

- 1. Limited range of OFDM numerologies.
 - CP lengths of 16.7, 33.3 and **200 μs**
 - All numerologies for MBSFN present overhead of 20%
 - MBSFN Reference signals are unique per numerology
 - **200 µs** allows for significantly larger inter-site distances, but limited compared to **DTT** standards
- 2. Mobility in large area SFN deployments
 - Extended Cyclic Prefix → Increased OFDM symbol duration → Reduced Sub-Carrier Spacing
 - There is a trade-off between maximum Inter-Site Distance and User Speed
 - 5G-Xcast link-level simulations show the speed to be limited to 100 km/h@700 MHz.
- 3. Cell Acquisition Subframe (CAS) for 100% broadcast carrier configured with unicast numerology
 - Mismatch between control and payload numerologies (15kHz extended 16.7us) vs (1.25kHz 200us)
- 4. Multi-Antenna Techniques are not possible as only SISO is permitted

	⊿ _f (kHz)	# subcarriers / RB	# OFDM symbols per subframe	<i>Т_{СР}</i> (µs)	<i>Τυ</i> (μs)	Overhead	ISD (km)
Normal Unicast	15	12	7	4.7 5.2 (1 st)	66.7	6.5%	1.4
Extended	15		6	16.7	66.7	20%	5
	7.5	24	3	33.3	133.3	20%	10
	1.25	144	1	200	800	20%	60

2.2. Main Limitations Identified

MBSFN

5. Unicast/broadcast multiplexing

- MBSFN subframes occupy the entire bandwidth (inefficient for large BW)
- Allocation of resources to unicast/broadcast can be configured between **0% and 80%** with steps of 2.5%
- 100% broadcast allocation possible in R14 with CAS

SC-PTM

Not possible to extend coverage via SFN

- The use of PDSCH disables possibility of SFN due to: not-defined numerologies and RS
- Scrambling is cell-specific

In general...

- Lack of diversity techniques (No time or frequency interleaving)
- Lack of effective feedback mechanisms for multicast transmission

2.3.1. IMT-2020 Technical KPIs

- 4G LTE benchmark around the KPIs defined in IMT-2020 [10] and those considered in WP3.
- Technical performance requirements defined for three usage scenarios :
 - 1. Enhanced Mobile Broadband (eMBB)
 - M&E
 - 2. Ultra-Reliable Low Latency Communications (URLLC)
 - Automotive (V2X)
 - Public warning
 - 3. Massive Machine-Type Communications (mMTC)
 - IoT

2.3.1. IMT-2020 Technical KPIs

• The **methodology** [12] is associated to the KPI under evaluation.

КРІ	IMT-2020 Scenario	5G-Xcast vertical	Methodology	
Bandwidth	eMBB, URLLC	M&E, PWS, V2X	Inspection	
Peak data rate	eMBB	M&E	Analytical	
Peak spectral efficiency	eMBB	M&E	Analytical	
Average spectral efficiency	eMBB	M&E	System Level Sim.	
User spectral efficiency	eMBB	M&E	System Level Sim.	
User plane latency	eMBB, URLLC	M&E, PWS, V2X	Analytical	
Control plane latency	eMBB, URLLC	M&E, PWS, V2X	Analytical	
Mobility	eMBB, URLLC	M&E, V2X	Link Level Sim.	
BICM spectral efficiency	eMBB	M&E	Link Level Sim.	
Peak BICM spectral efficiency	eMBB	M&E	Analytical	
Coverage	eMBB, mMTC	M&E, IoT	Coverage Sim.	
User experienced data rate	eMBB	M&E	Analytical	
Area traffic capacity	eMBB	M&E	Analytical	
Reliability	URLLC	PWS, V2X	System Level Sim.	
Energy efficiency	eMBB, mMTC	M&E, IoT	Inspection	
Connection density	mMTC	loT	System Level Sim.	

Simulation:

.

٠

.

 Method applied for KPIs that are heavily dependent on the instantaneous network conditions.

Analytical:

- Via mathematical analysis.
- Evaluation based on calculations that use technical information.

Inspection:

 It can be assessed by looking into general system design information.

2.3. RAN Benchmark 2.3.2. Inspection and Analysis

Bandwidth [inspection]

- LTE-Advanced Pro Rel'14:
 - It allows to use bandwidths of 1.4, 3, 5, 10 and **20 MHz**.
 - Carrier aggregation of up to **5 RF carriers** is permitted.
 - The maximum supported bandwidth is 100 MHz.

Peak data rate [analytical]

- *TBS_{max}* is the maximum Transport Block size (input data bits).
- T_s is the subframe duration (1 ms)

SISO
$$\gamma_p = \frac{97896}{10^{-3}} = 97.9 \text{ Mbps}$$

• **MBSFN:** $\gamma_p = \frac{84760}{10^{-3}} \frac{39}{40} = 82.6 \text{ Mbps}$
• **SC-PTM:** MIMO 2x2 $\gamma_p = \frac{195816}{10^{-3}} = 195.8 \text{ Mbps}$
1 subframe for CAS every 40 ms MIMO 4x4 $\gamma_p = \frac{391656}{10^{-3}} = 391.6 \text{ Mbps}$

 $\frac{TBS_{max}}{T}$

2.3. RAN Benchmark 2.3.2. Inspection and Analysis

Peak BICM spectral efficiency [analytical]

 $\eta_p^{BICM} = m_{max} \cdot CR_{max} \cdot N_{Tx/Rx}$

• MBSFN (200 μs):

$$CR_{max} = \frac{TBS_{max}}{N_b} = \frac{84760}{96000} = 0.882 \qquad \eta_p^{BICM} = 8 \cdot 0.882 = 7.06 \ bpc$$
$$N_b = m \cdot N_{RB} (N_{symb} N_{sc}^{RB} - N_{ref}) = 8 \cdot 100(1 \cdot 144 - 24) = 96000$$

- Ensuring CR < 0.925 (CQI 15), the maximum TB size is 84760.

• SC-PTM:
$$CR_{max} = \frac{TBS_{max}}{N_b} = \frac{97896}{110400} = 0.887$$
 $\eta_p^{BICM} = 8 \cdot 0.882 \cdot N_{Tx/Rx}$ SISO: 7.09 bits/s/Hz
 $N_b = m \cdot N_{RB} (N_{symb} N_{sc}^{RB} - N_{ref}) = 8 \cdot 100(12 \cdot 12 - 6) = 110400$ SISO: 7.09 bits/s/Hz
MIMO 2x2: 14.18 bits/s/Hz

2.3. RAN Benchmark 2.3.2. Inspection and Analysis

Peak spectral efficiency [analytical]

MBSFN:

$$\eta_p = \frac{82.6 \cdot 10^6}{20 \cdot 10^6} = 4.13 \text{ bits/s/Hz}$$
SC-PTM:
 $\eta_p = \frac{97.9 \cdot 10^6}{20 \cdot 10^6} = 4.89 \text{ bits/s/Hz}$

10 2x2: 9.79 bits/s/Hz MIMO 4x4: 19.58 bits/s/Hz

Summary

Technology	Antenna Scheme	η_p^{BICM} (bpc)	η_p (bits/s/Hz)	Overhead (%)	γ_p (Mbps)
	SIMO	7.09	4.89	30.9	97.9
SC-PTM	MIMO 2x2	14.18	9.79	30.9	195.8
	MIMO 4x4	28.36	19.58	30.9	391.6
MBSFN (200μs)	SIMO 1x2	7.06	4.13	41.5	82.6

2.3. RAN Benchmark 2.3.3. Link-Level Simulations

BICM spectral efficiency vs. CNR

- Selected criterion: BLER < 10⁻³ (0.1%)
- 1. AWGN
 - Example: BLER vs. CNR waterfall
 - SC-PTM:

Technology comparison:

-

2.3. RAN Benchmark

2.3.3. Link-Level Simulations

BICM spectral efficiency vs. CNR

- 2. MIMO i.i.d. Rayleigh channel
 - Cross-polarization discrimination factor XPD = ∞ .
 - Minimum Mean Square Error (MMSE) demapper with MIMO 2x2 SC-PTM and ATSC 3.0.
 - MBSFN employs a 1x2 SIMO scheme.

- Low spectral efficiencies: ATSC 3.0, MBSFN and SC-PTM provide similar performance.
- High spectral efficiencies:
 - ATSC 3.0 slightly outperforms SC-PTM.
 - ATSC 3.0 clearly outperforms MBSFN.
- MBSFN is limited to **7 bpc** while SC-PTM and ATSC 3.0 can increase their limits to more than **12 bpc**.

2.3. RAN Benchmark 2.3.3. Link-Level Simulations

BICM spectral efficiency vs. CNR

a) Fixed-rooftop environment

3. Real scenarios

2.3. RAN Benchmark 2.3.3. Link-Level Simulations

Mobility

- 1. Speed tolerance with real estimation
- Wide range of **Doppler** shifts [10 230 Hz].
- Frequency band **700 MHz**.
- MBSFN and ATSC 3.0 as critical technologies.
 - MBSFN with 1.25 kHz.
 - ATSC 3.0 FFT size 32K.
 - SC-PTM has wider carrier spacing of 15 kHz.

Theoretical Doppler limit [14]:

$$f_{D_{ATSC30}} = \frac{1}{2D_y(T_U + T_{CP})} = \frac{1}{2 \cdot 2 \cdot (1407.64 \,\mu\text{s})} = \mathbf{177.6} \, \mathbf{Hz} \propto 275 \, km/h$$

$$f_{D_{MBSFN}} = \frac{1}{2D_y(T_U + T_{CP})} = \frac{1}{2 \cdot 2 \cdot (1000 \,\mu\text{s})} = \mathbf{250} \, \mathbf{Hz} \propto 385 \, km/h$$

SGXCAST

- **Relevant KPI** for assessing **PTM** transmissions
 - Link between system and network deployment
- Characteristics evaluated:
 - Role of cyclic prefix and OFDM symbol duration in SFN
 - Mismatch between Cell Acquisition Subframe (CAS) and payload frames

SGXCAST

Performance in HPHT and LPLT Networks

- CP length in eMBMS is **sufficient** for **LPLT** but still **unable** to efficiently integrate **HPHT** deployments.
- **200** µs in Release'14 may permit HPHT deployments but for limited data rate services.
- **400** *µs* would improve performance if introduced in further releases.

Cyclic Prefix and Symbol Duration

- Trade-off between overhead and robustness against Inter-symbol Interference (ISI).
 - eMBMS is characterized by shorter CP durations than traditional DTT systems (e.g. DVB-T2 or ATSC 3.0).
 - Fixed overhead to 20%
 - Different CP and SCS cannot be combined
 - Not possible to design the system for fixed or mobile reception

CP (# Samples)	∆ (µs)	Overhead (%)			ISD (km)				
		8k	16k	32k					
GI1 (192)	27.87	2.3	1.2	0.6	8				
GI2 (384)	55.56	4.7	2.3	1.2	16				
GI3 (512)	74.07	6.3	3.1	1.6	22				
GI4 (768)	111.11	9.4	4.7	2.3	33				
GI5 (1024)	148.15	12.5	6.3	3.1	44				
GI6 (1536)	222.22	18.7	9.4	4.7	66				
GI7 (2048)	296.30	25.0	12.5	6.3	88				
GI8 (2432)	351.85	29.7	14.8	7.4	105				
GI9 (3072)	444.4	N/A	18.8	9.4	133				
GI10 (3648)	527.78	N/A	22.3	11.1	158				
GI11 (4096)	592.59	N/A	25	12.5	178				
GI12 (4864)	703.70	N/A	N/A	14.8	211				

ATSC 3 0

- Release'14 introduces the so-called **Cell Acquisition Subframe**.
 - But **reuses** numerology options of unicast control channels.
 - **Mismatch** in terms of sub-carrier spacing, cyclic prefix duration, use of MISO vs SISO.
 - Control: 15 KHz, extended CP (16.7us) Data: 1.25 KHz, extended CP (200us)

SFN 16.67 μs

2.3. RAN Benchmark 2.3.5. System-Level Simulations

Simulation platform:

- Emulates considerably larger parts of a communication network consisting of multiple base stations, UEs, gateways, application servers, etc.
- Includes layer-2/3 and higher layer functions.
- Abstract models for layer 1.
- Allows for evaluation of Radio Resource Management (RRM) and protocol functions.
- Takes into account interference between different concurrent transmissions or higher-layer consideration:
 - Impact of radio network performance on TCP connections
 - User experience at the application level.
- Takes into account UE distributions and mobility according to synthetic models or in "real-world" scenarios.

Test environment:

- Defined by the ITU for IMT-2020 evaluation [11].
- **Scope** of the simulation campaign:
 - Urban indoor eMBB
 - Urban outdoor eMBB
 - Rural indoor eMBB
 - Rural outdoor eMBB
 - Indoor hotspot.

2.3.5. System-Level Simulations

User spectral efficiency

• Example: urban indoor eMBB scenario.

Parameters	Dense Urban-eMBB		
Configuration	A		
Carrier frequency for evaluation	2 GHz		
Total transmit power per TRxP	41 dBm for 10 MHz bandwidth		
Number of antenna elements per TRxP	4		
Inter-site distance	200 m		
Percentage of high loss and low loss building type	20% high loss, 80% low loss		
Number of UE antenna elements	4		
Device deployment	100% indoor, and 100% outdoor (in car) uniformly distributed over the area under macro layer		
UE mobility model	Fixed and identical speed v of all UEs of the same mobility class, randomly and uniformly drop. Speed is taken into account in the small scale channel.		
UE speeds of interest	Indoor users: 3km/h Outdoor users (in-car): 30 km/h		
BS noise figure	5 dB		
UE noise figure	7 dB		
BS antenna element gain	14 dBi		
BS antenna elevation 3dB beamwidth	10°		
BS antenna azimuth 3dB beamwidth	65°		
UE antenna element gain	0 dBi		
Thermal noise level	-174 dBm/Hz		
Traffic mode	Full buffer		
Simulation bandwidth	10 MHz+10 MHz for FDD		
Link Level Channel model	3GPP TR 38.901		
UE density	Various values evaluated with simulations		
UE antenna height	1.5 m		

2.3. RAN Benchmark 2.3.5. System-Level Simulations

Overall findings

- Dense urban and rural IMT-2020:
 - The **user spectral efficiency** of cell-edge users is higher for SC-PTM as compared to that of unicast.
 - Average spectral efficiency
 - Low density of users (~15 users/cell): SC-PTM provides a better result with negligible packet loss rate due to the link adaptation and HARQ schemes.
 - SC-PTM outperforms unicast for higher density of users as the sharing of resources among numerous users is avoided.
- Indoor hotspot IMT-2020:
 - Unicast transmission mode has shown to be more promising than SC-PTM.
 - Very high packet loss rate with SC-PTM even at the lowest MCS setting.
 - Strong interferences, contributed by the dense deployment.
 - The interference level can be reduced by switching off some of the access points or by using SFN schemes.

2.3. RAN Benchmark 2.3.5. System-Level Simulations

System level performance of SC-PTM with several feedback schemes:

- e.g. less than 10 in the simulated 3-cell MBSFN scenario.

2.3. RAN Benchmark 2.3.6. RAN Architecture

User Plane Latency [analytical]

- End-to-end (E2E) Core to UE
 - TOTAL: 130 ms

$$T_u = \mathbf{A} + \mathbf{B} + \mathbf{C}$$

- A is the delay from BM-SC to eNB

 Assuming SYNC is MSP/2 (40 ms)
- B is the acquisition time of the MSP (80 ms)
- C is the UE processing time (10 ms)
- IMT-2020 requirement is not E2E but Layer 2/3 to UE acquisition.
 - 4 ms for eMBB, 1 ms for URLCC.
 - Related to B and C.
 - <u>NOT FULFILLED</u>

Control Plane Latency [analytical]

- RRC_IDLE UE without updated MCCH information delay
 - TOTAL: 225 ms
 - a is the SIB13 acquisition time in MCCH (10 ms)
 - b is the average delay of MCCH acquisition (160 ms)
 - c is the processing delay at UE to obtain desired TMGI (10 ms)
 - d is the average delay of MSP (**40 ms**)
 - e is the acquisition time of MSI (5 ms)
- In case that the UE is up-to-date with MCCH, only experiences d and e delays.
- IMT-2020 specifies that this time is from "battery saving" state to Active -> ☑

$$T_c = \mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d} + \mathbf{e}$$

Contents

- 1. Introduction
- 2. 4G LTE eMBMS Rel'14
 - 2.1. System overview
 - 2.2. Limitations identified
 - 2.3. RAN benchmark

3. 5G New Radio Rel'15 (PTP)

- 3.1. Air interface
- 3.2. Radio Access Network
- 3.3. Protocols and RRM

4. 5G-Xcast Solution for PTM

- 4.1. Air interface design
- 4.2. RAN design
- 4.3. Future work

- Section related to the studies performed in **Deliverable D3.2** (PTP parts). ٠
 - Final version will be released in **November 2018**.

3.1. Air interface

- New Radio physical layer: framing, numerologies, physical channels.
- PDSCH detailed explanation. •
- •
- Inspection and analysisIMT-2020 evaluationLink-level performance results

3.2. Radio Access Network

- **Overall RAN Logical Architecture.**
- Interfaces: Core-RAN-UE

3.3. Protocols and Radio Resource Management

3.1. Air Interface 3.1.1. New Radio - Physical Layer

Numerology

- Multiple Waveforms studied but Release 15 adopted CP-OFDM
- **Flexible** and **scalable** design to cover different use cases.
- Permits the use of subcarrier spacing (**SCS**) from 15 kHz to 240 kHz.
 - SCS of a BW part is defined as $\Delta f = 2^{\mu} \cdot 15 \text{ [kHz]}$
 - μ is a positive integer with values {0,1,2,3,4}, as specified in Rel'15.

μ	SCS (kHz)	<i>Τ_υ</i> (μs)	CP type	<i>Τ_{CP}</i> (μs)	Slot duration (µs)	slots/subframe
0	15	66,66	Normal	4.69	1000	1
1	30	33.33	Normal	2.34	500	2
2		16.66	Normal	1.17	250	4
2 60	10.00	Extended	4.16	250	4	
3	120	8.33	Normal	0.59	125	8
4	240	4.17	Normal	0.29	62,5	16

Different Numerologies can be multiplexed in TDM and FDM

3.1. Air Interface 3.1.1. New Radio - Physical Layer

Framing

- Subframes with variable number of slots $N_{slot} = 2^{\mu}$.
- Fixed *N*^{slot}_{symb} symbols per slot:
 - N_{symb}^{slot} = 14 for Normal CP, N_{symb}^{slot} = 12 for Extended CP
- Resource Element (RE)
 - One subcarrier allocated in one OFDM Symbol.
- Resource Block (RB)
 - Group of 12 consecutive REs in the frequency domain.

Bandwidth

Total Bandwidth can be divided into several Bandwidth
 Parts, each one with different numerology

CAST

3.1.1. New Radio - Physical Layer

Physical Channels and Signals

Downlink

- Physical Channels:
 - Physical Broadcast Channel (PBCH)
 - Physical Downlink Control Channel (PDCCH)
 - Physical Downlink Shared Channel (PDSCH)

- Physical Signals

- Primary Synchronization Signals (PSS)
- Secondary Synchronization Signals (SSS)
- Demodulation Reference Signals (DMRS)
- Channel State Information Reference Signals
 (CSI-RS)
- Phase Tracking Reference Signals (PT-RS)

Uplink

- Physical Channels:

- Physical Random Access Channel (PRACH)
- Physical Uplink Control Channel (PUCCH)
- Physical Uplink Shared Channel (PUSCH)

Physical Signals

- Demodulation Reference Signals (DMRS)
- Sounding Reference Signals (SRS)
- Phase Tracking Reference Signals (PT-RS)

3.1. Air Interface 3.1.1. New Radio - Physical Layer

Physical Channels and Signals

Allocation (Slot Format Indicator 0):

3.1. Air Interface 3.1.1. New Radio - Physical Layer (SS/PBCH) SS/PBCH

PSS and SSS

- Used by UE for initial cell search to obtain:
 - frame timing
 - Cell ID
 - Reference signals for demodulation

– PBCH

- Basic physical layer signalling
 - Master Information Block (MIB).
- Polar coded.
- Includes **DMRS Signals** to estimate the channel.

- SS/PBCH Block

- Formed by 4 OFDM Symbols: 1 PSS, 1 SSS and 2 PBCH.
- 240 subcarriers per OFDM symbol.
- **Frequency domain:** Allocation depending on the high layer parameter *ssb-subcarrierOffset*.
- **Time domain:** Sent in periodical bursts, where the number of blocks depends on numerology and frequency band.

- PBCH with 20 RB's
- SSS with 12 RB's + upper PBCH with 4 RBs + lower PBCH with 4 RBs
- PBCH with 20 RB's

3.1.1. New Radio - Physical Layer (PDCCH)

PDCCH

- Specific **control** and **scheduling** information.
- **Downlink Control Information** (DCI): indicates data scheduling within PDSCH for a UE.
 - Minimum DCI bits = 12 (same as Format 1C for a 5 MHz channel).
 - Length depending on **DCI formats.**
 - 24 bits CRC.
- **Polar** coded, **QPSK** modulation.
- **Aggregation Level** (AL): related to the total number of consecutive Control Channel Elements (CCE) for transmitting the encoded control message.
 - 1 CCE = 6 continuous REGs (Resource element Groups)
 - 1 REG = 12 REs (Resource Elements)
- Example of PDCCH total bits: 4 (aggregation level of CCE) x 6 (REG/CCE) x 12 (RE/REG) x 2 (bits/RE, QPSK) = 576 bits
- Effective **code rate** is *A***/***E*:

3.1.1. New Radio - Physical Layer (PDCCH)

PDCCH

- REGs are mapped in **control-resource sets** (CORESET) for a given numerology.
- Time allocation:
 - OFDM Symbols 0,1 or 2 of subframes with no SS/PBCH blocks.
 - Content can be distributed in 1,2 or 3 OFDM Symbols.
- DMRS Signals
 - Enable the correct **demodulation** of the channel by means of **channel estimation**.
 - Location depending on DMRS pattern.

3.1.1. New Radio - Physical Layer (PDSCH)

PDSCH

- Transmits data content and SIBs to UEs.
- LDPC Coded.
- Modulation orders: QPSK, 16QAM, 64QAM, 256QAM.
- Reference Signals
 - **DMRS:** Used for **channel estimation** to allow demodulation.
 - CSI-RS: Provide channel state information needed for link adaptation.
 - **PT-RS:** To **estimate the phase noise** at high frequency ranges.
- PDSCH Allocation: In any time and frequency position where SS/PBCH and PDCCH are not allocated.

Example of PDCCH and PDSCH slot allocation for FR1.

3.1.1. New Radio - Physical Layer (PDSCH)

• **PDSCH** Rel'15 block diagram [18-20]:

- Bit-Interleaved Coded Modulation (BICM).
 - Channel coding [Segmentation + CRC + LDPC + Rate Matching]
 - Scrambling
 - Modulation mapper

Easy design: the channel encoder and the mapper are separated by a bit-interleaver, and therefore they can be designed independently.

AST

3.1.1. New Radio - Physical Layer (PDSCH)

Segmentation + CRC

- 1. A **first set of CRC** parity bits is generated by a cyclic generator polynomial, with size:
 - *L* = 24 if *A* > 3824
 - L = 16 otherwise
- 2. *B* is **segmented** into several CBs with size *K* if $B > K_{cb}$, where
- $K_{cb} = 8448$ if Base Graph 1 $K_{cb} = 3840$ if Base Graph 2
- 3. An **additional CRC** sequence with always size L = 24 is attached to each K'.
- 4. **Filler bits** *F* are placed to fit size *K*

3.1.1. New Radio - Physical Layer (PDSCH) LDPC coding

- Each CB with size *K* is coded using a LDPC matrix.
- LDPC matrix generated as follows:
 - 1. Initial H_{BG} matrix generated with all zeros.

The elements with row and column indices given in Tables 5.3.2-2 (BG1) and 5.3.2-3 (BG2) in
[8] are set to 1.

3.1. Air Interface 3.1.1. New Radio - Physical Layer (PDSCH) LDPC coding

- 3. **H** is obtained by replacing each element of H_{BG} with a $Z_c \times Z_c$ matrix.
 - Elements in H with value **0** are replaced by a **zero matrix** of size $Z_c \times Z_c$.
 - Elements in H with value **1** are replaced by a **circular permutation matrix** $I(P_{i,j})$ of size $Z_c \times Z_c$.
 - obtained by circularly shifting the identity matrix *I* of size $Z_c \times Z_c$ to the right $P_{i,j}$ times.
 - Values of $P_{i,j}$ are given in **TS 38.212**.
- Parity bits generation and LDPC output:
 - 4. Generate the parity bits w such that $\mathbf{H} \times \begin{bmatrix} \mathbf{c} \\ \mathbf{w} \end{bmatrix} = \mathbf{0}$, where c is the code block with size K.
 - 5. The output with size *N* is generated as follows:

43

- 2. Full **bit interleaver** applied to each CB with size *E*.
- 3. CBs are concatenated:
 - Output with size N_b (total bits initially calculated following 38.214).

3.1.1. New Radio - Physical Layer (PDSCH)

Scrambling

- Input bits are scrambled prior to modulation for protection against burst errors.
- Bits are multiplied by a scrambling sequence:

Modulation

- Bits are transformed into symbols using QAM.
- 4 different constellation orders used.
 - They depend on the **MCS index**.

 $\widetilde{b}(i) = (b(i) + c(i)) \mod 2$

(as defined in 3GPP)

KPI

3.1.2. Inspection and Analysis

• IMT-2020 requirements evaluated against KPIs considered within the project.

Bandwidth [Inspection]

- Maximum aggregated system bandwidth including frequency guard bands.
- It may be composed of either a single or **up to 16** radio frequency (RF) carriers.
- A single component carrier supports:
 - **FR1** (450 MHz 6 GHz): 5, 10, 15, 20, 25, 40, 50, 60, 80 or 100 MHz.
 - **FR2** (24.25 GHz 52.6 GHz): 50, 100, 200, 400 MHz.

Frequency range	Numerology (µ)	Maximum BW (MHz)	Maximum N _{PRB}	Number of CA carriers	Total CA BW (GHz)
FR1 (450 MHz - 6 GHz)	0	50	270		0.8
	1	100	273	16	1.6
	2	100	135		1.6
FR2	2	200	264		3.2
(24.25 GHz - 52.6 GHz)	3	400	264		6.4

Transmission bandwidths up to **6.4 GHz** are supported to provide high data rates.

3.1.2. Inspection and Analysis

Peak data rate [Analysis]

• Calculated as [21]:

$$\mathcal{V}_{p} = \sum_{j=1}^{J} \left(\mathcal{V}_{Layers}^{(j)} \cdot \mathcal{Q}_{m}^{(j)} \cdot \mathcal{R}_{\max} \cdot \frac{N_{PRB}^{BW(j),\mu} \cdot 12}{T_{s}^{\mu}} \cdot \left(1 - OH^{(j)}\right) \right)$$

Example:

- J is the number of aggregated carriers in a frequency band
- *v* is the number of layers when multiple antennas are used
- Q_m is the maximum modulation order
- R_{max} is the maximum CR:
- μ is the numerology
- T_s is the OFDM symbol duration in seconds
- N_{PRB}^{BW} is the maximum RB allocation in the whole BW
- OH is the overhead
- Extrapolation to all configurations (Gbps):

Freq. Band	Num.	Total OH (%)	γ_p (Gbit/s) SISO	γ _p (Gbit/s) MIMO 8 Layers	γ_p (Gbit/s) SISO + CA	γ_p (Gbit/s) MIMO + CA
	0	20.45	0.29	2.34	4.69	37.56
FR1	1	18.98	0.60	4.78	9.57	76.35
	2	20.56	0.58	4.67	9.35	74.79
ED 2	2	32.24	1	8	16	128
PK2	3	30.59	2.05	16.39	32.79	262.35

3.1.2. Inspection and Analysis

Peak spectral efficiency [Analysis]

• Calculated as the peak data rate normalized by carrier bandwidth:

Frequency Band	Numerology	η_p (bit/s/Hz) SISO	η_p (bit/s/Hz) MIMO
FR1	0	6.06	48.52
	1	6.22	49.82
	2	6.06	48.52
FR2	2	5.57	44.60
	3	5.57	44.58

Peak BICM spectral efficiency [Analysis]

$$\eta_p^{BICM} = m_{max} \cdot CR_{max} \cdot v$$

SISO:	7.41 bit/s/Hz
MIMO 8x8:	59.2 bit/s/Hz

 γ_p

 η_n

3.1.3. Link-Level Simulations (PDSCH)

BICM spectral efficiency vs. CNR

- Selected criterion: BLER < 10⁻³ (0.1%), μ = 0, BW = 10 MHz
- 1. AWGN
 - Waterfall

- 5G NR performance significantly **better than LTE**, mainly due to LDPC codes.
- Worse than ATSC 3.0: non-uniform constellations and longer LDPC codewords.

- Technology comparison vs. 4G / ATSC 3.0

3.1.3. Link-Level Simulations (PDSCH)

BICM spectral efficiency vs. CNR

codeword

2 MIMO - AWGN

16

BICM Spectral Efficiency (bit/s/Hz)

0

-7

15 17

9 11 13

CNR (dB)

21

19

25

23

- 2 selected MIMO configurations:
 - MIMO 2x2: 2 layers, 1 codeword (TS 38.211).
 - MIMO 4x4: 4 layers, 1 codeword (TS 38.211).
- The use of multiple antennas drastically increases the BICM spectral efficiency.
- Capacities for CNR 15 dB:
 - SISO 4.1 bit/s/Hz
 - MIMO 2x2 6.8 bit/s/Hz
 - MIMO 4x4 10.3 bit/s/Hz

3.1.3. Link-Level Simulations (PDSCH)

BICM spectral efficiency vs. CNR

- 3. TDL channel models (IMT-2020) [10]
- Frequency band 4 GHz

Scenario	Indoor hotspot	Dense urban	Rural
NLoS	TDL-A	TDL-C	TDL-C
LoS	TDL-D	TDL-E	TDL-E
Delay spread (ns)	20-30	100-300	30
User speed (km/h)	3	30	120

b) MIMO 2x2

a) SISO

3.1.3. Link-Level Simulations (PDSCH)

Mobility

- Theoretical Doppler limit:
- $f_{D_{limit}} = \frac{1}{2D_{y}(T_{U}+T_{CP})} = \frac{1}{2 \cdot 9 \cdot 10^{-3}(66.6+5.2)} = 773.1 \text{ Hz}$
- **z** 1192 km/h @ 700 MHz 208 km/h @ 4 GHz

- Mapping Type A
- DMRS configuration type 1
- 2 DMRS symbols

μ	DMRS Symbols	Dy	f _D	User limit (km/h) @ 700 MHz	User limit (km/h) @ 4 GHz
•	2	9	773.1	1192	208
U	4	5	1391.6	2147	375
4	2	9	1546.2	2385	417
	4	5	2783.2	4294	751
2	2	9	3092.4	4771	834
2	4	5	5566.4	8588	1502

- **MCS 3** (QPSK CR ~1/4).
- @ 700 MHz: All configurations fulfil the requirement.
- **@ 4 GHz:** numerology 1 with more than 2 DMRS symbols is at least needed.

3.1.3. Link-Level Simulations (PDCCH)

BICM spectral efficiency

Simulation parameters

- Channel BW 5 MHz 🔶 CFI = 3
- New Radio:
 - DCI bits (NR) = 12 bits (smallest possible)
 - ♦ AL = 1, 2, 4, 8 → CR = $\frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{22}$
- LTE:
 - DCI bits (LTE) = 12 bits (format 1C)
- AWGN SISO channel
- Maximum Likelihood (ML) Receiver
- Rate recovery process includes additively combining any repetitions to distinguish the performance difference of higher aggregation level.

Results Analysis

- Due to the different CRC and aggregation level for LTE and NR, fair comparison is hard to achieve, but generally Polar outperforms Tail-biting.
- Same 'aggregation level' (e.g., AL1): with the parameters shown, CNR required in NR is about 2.3dB less than LTE to achieve BLER < 10⁻³.
- NR AL8: minimum CNR is **-10.5 dB** (lower than any PDSCH configuration).

3.2.1. Overview

5G RAN status in 3GPP:

- Not possible to connect the 5G RAN to 5GC at the moment (non-standalone).
- **End of June**: NR-standalone deployments.
- **End of 2018**: additional deployment scenarios.

- Rel.15 early drop (December 2017) of specification

- Rel.15 drop (June 2018) of specification (incl. NR standalone)

3.2.2. Overall RAN Logical Architecture

- Rel'15 RAN is called **Next-Gen RAN** (NG-RAN) or **5G-RAN**.
 - Formed by a number of gNB
- Main novelty over E-UTRAN: **Centralized/Distributed Unit** (CU/DU) separation at gNB level.
 - One DU can only belong to a CU
 - One CU can address several DUs
 - The goal is to have **interoperability** between CU and DU of different vendors, and favour Cloud RAN deployments.
- gNB is connected to one or several User Plane Function (UPF) in the user plane.
- gNB is connected to one or several Access and Mobility Management Function (AMF) in the Control Plane
 - NG-Flex only.

3.2.2. Overall RAN Logical Architecture

- **Centralized Unit (CU)** is tasked with:
 - Service Data Adaptation Protocol (SDAP), **new in 5G**.
 - Packet Data Convergence Protocol (PDCP)
 - Radio Resource Control (RRC)
 - Radio Resource Management (RRM)
- **CUPS** separation can be applied to the CU.
 - Split into CU-C and CU-U, connected by E1
- **Retransmissions**, mobility inter-DU cells is managed by the CU.

3.2.2. Overall RAN Logical Architecture

- Distributed Unit (DU) controls:
 - Radio Logical Control (RLC)
 - Medium Access Control (MAC)
 - Physical (PHY)

•

- **PHY** can further connect to several cells/RRH, using optical interfaces e.g. eCPRI.
 - Up to 512 cells/RRH per DU
- **Additional studies** to further split the PHY into High-PHY and Low-PHY, but no consensus reached.

SGXCAST

Interfaces between the 5G Core (5GC) and the RAN [23,24]:

- Also known in 3GPP as 5GC:
 - Separately NG Core on Control Plane (CP) and NG Core on User Plane (UP).
 - 5GC reference point N2 between gNB and AMF.
 - 5GC reference point N3 between gNB and UPF.

• RAN internal interfaces [25]:

- Xn interface between gNBs
 - Separate Centralized Units (CU) for CP and UP
 - Xn-C between gNB-CU-CPs
 - Xn-U between gNB-CU-UPs
- E1 between gNB-CU-CP and gNB-CU-UP
- F1 between CU and Distributed Units (DU)
 - Different F1-C on CP and F1-U on UP
 - F1-C between gNB-CU-CP and gNB-DU
 - F1-U between gNB-CU-UP and gNB-DU

SGXCAST

• **Protocol stacks** used for each of the RAN internal interfaces [26-28]:

• Interfaces between the **RAN** and users [29]:

- **Uu** is the **air interface** between gNB and UE (previous section).
- Both protocol stacks are combined in the same radio link.

3.3. Protocols and RRM

3.3.1. Flexible Resource Allocation Methods

- **Q**: What is new compared to LTE?
- A: More of almost everything.
- 5G New Radio is based on MIMO-OFDM
- Flexibility in **time**, **frequency** and **space**.
- Frame structure:
 - Dynamic TDD
 - Theoretically decided on slot basis.
 - Flexible frame structure
 - Smaller time granularity of RRM down to 0.125ms
 - 0.125ms, 0.25ms, 0.5ms, 1ms.
 - Not only one slot length.
 - HARQ feedback configurable and even in the same slot possible.
 - Puncturing of high priority traffic into lower priority traffic.

Frequency

User 1

User 2

User 1

User 4

User 4

Time

User B

Q: What is new compared to LTE? A: More of almost everything.

- **Spatial multiplexing**: massive antenna arrays.
 - IMT-2020:
 - Up to 256 for $fc \le 6$ GHz
 - Up to 2014 for $f c \ge 30 \text{ GHz}$
 - Already started for LTE with "FD-MIMO"
 - Up to 8 layers.
 - Extreme beamforming and MU-MIMO multiplexing on same timefrequency resource
 - Fully digital
 - ✤ Hybrid
 - Analog (no MU-MIMO)

Contents

- 1. Introduction
- 2. 4G LTE eMBMS Rel'14
 - 2.1. System overview
 - 2.2. Limitations identified
 - 2.3. RAN benchmark

3. 5G New Radio Rel'15 (PTP)

- 3.1. Air interface
- 3.2. Radio Access Network
- 3.3. Protocols and RRM

4. 5G-Xcast Solution for PTM

- 4.1. Air interface design
- 4.2. RAN design
- 4.3. Future work

- Section related to the studies performed in **Deliverable D3.2** (PTM solution).
 - Final version will be released in November 2018.

4.1. Air interface design

- Mixed mode: single-cell (SC-MM) and multi-cell (MC-MM).
- Terrestrial Broadcast mode.

4.2. Radio Access Network design

- RAN Architecture to enable broadcast/multicast.
- New interfaces for 5G-Xcast
- Multicast Content Delivery in SC/MC-MM
- Synchronization for SFN area.

4.3. Future work

Multicast (one to many) Broadcast (one to all)

4.1. Air Interface Design

4.1. Air Interface Design 4.1.1. Single-Cell Mixed Mode (SC-MM)

- Enables the **dynamic allocation** of PTP and multicast resources within a single cell.
- Reuses as much as possible the existing 5G NR PTP air interface.
- Some changes are required due to 5G NR PTP air limitations:
 - C-RNTI
 - Acquired in RRC connection.
 - Scrambles CRC in PDCCH and PDSCH transmissions.
 - ✤ C-RNTI is unique for each UE.
 - Not valid for PTM communications.
 - Solution:
 - Group-RNTI (G-RNTI) is introduced to enable common transmissions to several UEs.
 - Acquired similarly to C-RNTI.
 - Coexists with C-RNTI.

4.1.1. Single-Cell Mixed Mode (SC-MM)

Required modifications:

- DCI Format
 - DCI formats in 5G NR are designed just considering PTP.
 - Solution: New DCI formats to be included for PTM.
- DCI transmissions
 - One DCI is transmitted within a CORESET for each UE.
 - Considerable PDCCH overhead would be introduced for PTM.
 - **Solution**: One DCI transmitted within an only CORESET for a group of UEs interested in the same content. It implies an overhead reduction.

Number of UEs	Number of REs PTP	Number of REs SC-MM	Overhead Reduction (%)
2	144	72	50%
3	216	72	66%
5	360	72	80%
10	720	72	90%

- Feedback retransmissions
 - Feedback mechanisms are only defined for PTP transmissions.
 - Group link adaptation and MCS selection to enable group HARQs will be further reviewed.

4.1. Air Interface Design

4.1.2. Multi-Cell Mixed Mode (MC-MM)

- Enables **coordinated transmissions** across multiple cell areas.
- Based on SC-MM.
- MC-MM introduces some changes due to SC limitations:
 - Single Frequency Networks (SFNs)
 - Reuses 5G NR PTP numerology.
 - Maximum Inter-Site Distance (ISD) of 1.4 km.
 - Suitable for use cases such as stadiums, campus, malls or critical communications in urban scenarios.
 - Cell Scrambling Sequence ($N_{\text{ID}}^{n_{\text{SCD}}}$)
 - Defines control and data location as well as DMRS values.
 - Can be defined in two ways:
 - Depending on the PSS and SSS, it can be equal to Cell ID: $N_{\rm ID}^{n_{\rm SCID}} = N_{\rm ID}^{\rm cell}$
 - Initializing to a certain value: $N_{\text{ID}}^{n_{\text{SCID}}} \in \{0,1,\dots,65535\}$
 - Transmissions of different sequences for each cell avoid SFN gains.
 - Solution: Initializing the same cell scrambling sequence for all cells.

Coordinated retransmissions

- Feedback retransmissions are done from one single gNB.
- Coordinated retransmissions can be performed from more than one gNB depending on the UE location.

μ	SCS (kHz)	Туре СР	<i>Τ_{CP}</i> (μs)	ISD (km)
0	15	Normal	4.69	1.41
1	30	30 Normal		0.7
2	60	Normal	1.17	0.35
		Extended	4.16	1.25
3	120	Normal	0.59	0.18
4	240	Normal	0.29	0.09

4.1.3. Terrestrial Broadcast Mode (T-Broad)

- 5G-Xcast will study solutions for Terrestrial Broadcasting from a **5G NR perspective**:
 - 5G NR brings different features and structures w.r.t. LTE.
 - Possibility to design a new system without constraints from legacy mechanisms.
- The **T-Broad** solution will reuse as much as possible of the NR PTM design to enable:
 - Large area coverage (up to national scale)
 - Integration from LPLT to HPHT networks with different ISDs.
 - Keeping KPI performance of NR eMB when possible in terms of:
 - High mobility performance
 - High spectral efficiency and data rates
- Enabling **SFN** in NR is a concept to be studied.
 - Proposal in 3GPP for Negative numerologies or mini-slots
 - Subcarrier spacings lower than 15 kHz.
 - Extended CP.
 - * Trade-offs? Constraints?

μ	SCS (kHz)	<i>Τ_U</i> (μs)	Ext. CP (µs)	ISD (km)
0	15	66,67	16,66	5
-1	7.5	133,33	33,33	10
-2	3,75	266,67	66,66	20

4.2.1. RAN Architecture to Enable MC/BC

- Modifications to the overall RAN architecture need to be addressed in order to enable multicast / broadcast capabilities.
- Design principles behind **5G-Xcast RAN**:
 - A flexible and adequate system to support **several verticals** inside the **same framework**.
 - Support for dynamic switching between NR PtP, SC-MM and MC-MM based on UE activity, mobility and geographical location, alongside seamless transition within delivery modes.
 - Allowing feedback from users to perform link adaptation to optimize QoE.
 - Delivery mode should be transparent to UEs.
 - Support for reconfigurable large SFN areas with Core involvement, targeting ROM devices.
 - Support for PTP and PTM data multiplexing
 - ✤ Reserving subframes for broadcast services → optional
 - Use NR RAN Rel'15 architecture design as the starting point.

4.2.1. RAN Architecture to Enable MC/BC

- To fulfil the aforementioned criteria, the **RAN Multicast Area (RMA)** mechanism is introduced.
 - RMA is the region with cell coverage where multicast data is being transmitted.
 - The coverage of the cells who are broadcasting a determined service.
 - SFN operation is allowed inside the RMA.
- RMA managed by the master/anchor gNB
 - Although using cells in a secondary gNB is allowed.
- UE can move inside a RMA and still receive the multicast transmission with acceptable QoE.
 - If the UE is close to the edge of the RMA, gNB can add the neighbour cell to the RMA to avoid service interruption.
 - gNB can decide to switch the new user back to unicast at the new cell if having RMA there is not efficient.
- RAN can force a percentage of UE receiving media over unicast (RRC_Connected) to switch into multicast (RRC_Inactive). Some UEs stay in RRC_Connected to deliver feedback.

4.2.1. RAN Architecture to Enable MC/BC

- RMA can add or remove cells dynamically.
- RMA can be broadcasted on disjointed areas.
- SFN operation should be available in multi-cell scenarios
- **Types** of RMA deployment:

 - 2. RMA Intra-DU \rightarrow All cells forming the RMA belong to the same DU.

 - 4. RMA Inter-CU
 Cells forming the RMA belong to two or more CUs.

4.2.2. Interfaces for 5G-Xcast

External interface towards the UE:

- New logical channel introduced for T-Broad without feedback
- SC/MC-MM new logical downlink channel with feedback

RAN internal interfaces:

- Reuse the current **5G** interfaces.
- However, they need to be enhanced in order to support multicast/broadcast.
- Additional interfaces are necessary for some WP4 proposals (M1-NG for Architecture 2).

4.2.3. Multicast Content Delivery in SC/MC-MM

Multicast User Plane:

- The **NG-RAN** receives information about UE's interest to receive multicast data as part of PDU session procedures.
- Multicast data to the **IP multicast group** is delivered to **NG-RAN** over a **N3** tunnel.
- The **NG-RAN** knows for each **N3** tunnel at least the identities of UEs, which are interested to receive the multicast data.

4.2.3. Multicast Content Delivery in SC/MC-MM

JE	RAN	SMF Redirection to e	UPF dge cloud (incl. IP multicast ad	Content server (multicast) Resource allocation on edge cloud (incl. IP multicast address)	Content server (unicast)
PDU Session Update Mapping multicas multicast radio bearer unicast radio bearer	Join IP multicast	group	figuration) mu	Ilticast data	d-to-End Data Flow PDU session modification request associates the UE with the CN tunnels. Shared by all UEs interested in the same IP multicast group. RAN sends data from these tunnels to the UEs according to the association using a set of unicast and multicast radio bearers.

4.2.4. Synchronization for SFN Area

- SFN operation has special requirements, fulfilled by **RAN**:
 - **Common scheduling** between synchronized transmitters.
 - **Same radio parameters** across transmitters.
- In 5G-Xcast, for multi-cell RMA, small-SFN should be possible without core involvement.
- Different SFN scenarios occur depending on the cells involved:
 - All cells are inside one DU (Intra-DU SFN).
 - Cells are spread over several DU. These DU are under one CU (Inter-DU SFN).
 - Cells are spread over several DU. These DU belong to two or more CU (Inter-CU SFN).
- **Assumptions** for the detailed analysis of each scenario:
 - Cells under one DU are geographically close to each other \rightarrow same delays experienced
 - RMA is already deployed on those cells (RMA triggering already covered in previous slides)
 - If synchronization protocol is needed, it is delivered over the User Plane

4.2.4. Synchronization for SFN Area

Scenario 1: Intra-DU SFN

- DU MAC entity enforces common scheduling and radio parameters.
- Possible network delays differences are negligible between cells.
 - No need of synchronization protocol.

Scenario 2: Inter-DU SFN

- CU enforces common scheduling and radio parameters across cells over F1
- No current specified method in F1 to do this in Rel'15.
- Network delay differences still very small between cells.
 - **No need** of synchronization protocol.

CAST

4.2.4. Synchronization for SFN Area

Scenario 3: Inter-CU SFN

- Anchor/master CU will enforce common scheduling & radio parameters over Xn to the other CUs.
- No current specified method in Xn interface to do this in Rel'15.
- CUs besides the Master will experience different delays than the Anchor:
 - Anchor CU Delay = F1 + F1 Proc.Time + Optical Interface
 - Other CU Delay = Xn + Xn Proc.Time + F1 + F1 Proc.Time + Optical
- It might be necessary to use a compensation protocol to take into account this delay difference
 - e.g. SYNC or similar.

Summary

Scenario	Interfaces involved	Expected delay	Notes
Intra-DU	-	Low	gNB-DU applying common scheduling to RRU ensures the SFN operation.
Inter-DU	F1	Low	gNB-CU signals the scheduling via F1 Interface.
Inter-CU	F1, Xn	Medium	Anchor gNB-CU signals the scheduling via Xn Interface. Additional signalling to compensate Xn delay.

Changes are required to F1 and Xn interface in order to support SFN operation

4.3. Future Work

A. Air interface evaluation:

- Link-level simulations for PTM scenarios.
- Coverage and system-level simulations. Comparison with 5G Rel'15.

B. RAN design:

- Define the final RAN architecture for 5G to enable broadcast and multicast PTM transmissions.
- Identify dependencies between Core and RAN for T-Broad delivery mode.
- Supporting a wide range of use cases.

C. Protocols and RRM:

- Flexible Resource Allocation Methods.
- Study on the feasibility and value of feedbacks for link adaptation or cross-layer optimization.
- Study on efficient use of radio transmission methods.
- Propose implementation guidelines for the deployment of 5G broadcast networks.

D. Prototypes

- 5G-Xcast Software Defined Radio (SDR) RAN platform.
- Comprehensive 5G-Xcast RAN software emulator.

References

- [1] J. Huschke and M.-A. Phan, "An Overview of the Cellular Broadcasting Technology eMBMS in LTE," in Next Generation Mobile Broadcasting, pp. 223-252, March 2013.
- [2] F. Hartung, U. Horn, J. Huschke, M. Kampmann, T. Lohmar, and M. Lundevall, "Delivery of Broadcast Services in 3G Networks," IEEE Transactions on Broadcasting, vol. 53, no. 1, pp. 188-199, Mar. 2007.
- [3] D. Lecompte and F. Gabin, "Evolved Multimedia Broadcast/Multicast Service (eMBMS) in LTE-Advanced: Overview and Rel-11 Enhancements," IEEE Communications Magazine, vol. 50, no. 11, pp. 68-74, Nov. 2012.
- [4] J. Kim, S. W. Choi, W.-Y. Shin, Y.-S. Song, and Y.-K. Kim, "Group Communication over LTE: A Radio Access Perspective," IEEE Communications Magazine, vol. 54, no. 4, pp. 16-23, April 2016.
- [5] 3GPP TR 36.890 v13.0.0, "Study on Support of single-cell point-to-multipoint transmission in LTE," July 2015.
- [6] T. Stockhammer, I. Bouazizi, F. Gabin, J.M. Guyot, C. Lo, and T. Lohmar, "Enhanced TV Services over 3GPP MBMS," Proc. International Broadcasting Convention (IBC), Amsterdam, September 2017.
- [7] 3GPP TS 36.211 v14.6.0, "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 14)," Apr. 2018.
- [8] 3GPP TS 36.212 v14.6.0, "Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 14)," Apr. 2018.
- [9] 3GPP TS 36.213 v14.6.0, "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 14)," Apr. 2018.
- [10] International Telecommunications Union (ITU), Draft New Report ITU-R M., "Guidelines for evaluation of radio interface technologies for IMT-2020", Oct. 2017.
- [11] International Telecommunications Union (ITU), ITU-R M.2083, "IMT Vision Framework and overall objectives of the future development of IMT for 2020 and beyond", Sept. 2015.
- [12] International Telecommunications Union (ITU), Draft New Report ITU-R M., "Minimum requirements related to technical performance for IMT-2020 radio interface(s)", Feb. 2017.
- [13] N. Loghin, et al., "Non-Uniform Constellations for ATSC 3.0," IEEE Transactions on Broadcasting, vol. 62, no. 1, pp. 197-203, March 2016.
- [14] ETSI TR 102 831 v1.1.0, "Implementation guidelines for a second generation digital terrestrial television broadcasting system (DVB-T2)," Oct. 2010.
- [15] P. Moss, T. Y. Poon and J. Boyer, BBC White Paper WHP 205, "A simple model of the UHF cross-polar terrestrial channel for DVB-NGH," Sep. 2011.
- [16] ETSI TR 102 401 v1.1.1, "Digital Video Broadcasting (DVB); Transmission to Handheld Terminals (DVB-H); Validation Task Force Report," May 2005.
- [17] 3GPP TS 36.300 v13.5.0, "Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN); overall description; stage 2 (Release 13)," Sept. 2016.
- [18] 3GPP TS 38.211 v15.1.0, "Technical Specification Group Radio Access Network; NR; Physical channels and modulation (Release 15)," Apr. 2018.
- [19] 3GPP TS 38.212 v15.1.1, "Technical Specification Group Radio Access Network; NR; Multiplexing and channel coding (Release 15)," Apr. 2018.
- [20] 3GPP TS 38.214 v15.1.0, "Technical Specification Group Radio Access Network; NR; Physical layer procedures for data (Release 15)," Apr. 2018.
- [21] 3GPP TSG RAN WG1 Meeting #92, Huawei and HiSilicon, R1-1801794, "Consideration on self evaluation of IMT-2020 for peak spectral efficiency and peak data rate", Feb-Mar. 2018.
- [22] 3GPP TS 38.801 v14.0.0, "Technical Specification Group Radio Access Network; Study on new radio access technology: Radio access architecture and interfaces (Release 14)," Mar. 2017.
- [23] 3GPP TS 38.410, v.0.9.0, "Technical Specification Group Radio Access Network; NG-RAN; NG general aspect and principles (Release 15)," Apr. 2018.
- [24] 3GPP TS 23.501, v.15.1.0, "Technical Specification Group Radio Access Network; System Architecture for the 5G System; Stage 2 (Release 15)," Mar. 2018.
- [25] 3GPP TS 38.401, v.15.1.0, "Technical Specification Group Radio Access Network; NG-RAN; Architecture description (Release 15)," Apr. 2018.
- [26] 3GPP TS 38.420, v.0.8.0, "Technical Specification Group Radio Access Network; NG-RAN; Xn general aspects and principles (Release 15)," Apr. 2018.
- [27] 3GPP TS 38.460, v.0.3.0, "Technical Specification Group Radio Access Network; NG-RAN; E1 general aspects and principles (Release 15)," May 2018.
- [28] 3GPP TS 38.470, v.15.1.0, "Technical Specification Group Radio Access Network; NG-RAN; F1 general aspects and principles (Release 15)," Apr. 2018.
- [29] 3GPP TS 38.300, v.15.1.0, "Technical Specification Group Radio Access Network; NR; Overall description; Stage-2 (Release 15)," Apr. 2018.
- [30] 3GPP TR 36.890 v.13.0.0, "Study on Support of single-cell point-to-multipoint transmission in LTE (Release 13)," July 2015.

Thank You

Any Questions ?